• Title/Summary/Keyword: Surface chemistry

Search Result 3,795, Processing Time 0.037 seconds

Schiff Bases as Anticorrosive Additives for Mild Steel Corrosion in Acid Media

  • Abirami, M.;Sasikala, S.;Chitra, S.;Parameswari, K.;Selvaraj, A.
    • Corrosion Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • The influence of Schiff bases on the corrosion inhibition of mild steel in 1 M $H_2SO_4$ have been investigated by weight loss, gasometry, impedance and polarization techniques. The results obtained reveal that these compounds act as good inhibitors. The inhibition efficiency of Schiff bases increased with concentration and synergistically increased on addition of chromate, sulphate and halide ions. Potentiodynamic polarization measurements clearly reveal that the investigated inhibitors are of mixed type but they are more cathodic in nature. The adsorption of these compounds on mild steel surface for both the acids were found to obey Langmuir adsorption isotherm. The surface morphology was studied by SEM and UV reflectance spectra.

Control of Particle Characteristics in the Preparation of TiO2 Nano Particles Assisted by Microwave

  • Lee, Han-Bin;Choi, Min-Sik;Kye, Youn-Hee;An, Myoung-Young;Lee, Ik-Mo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1699-1702
    • /
    • 2012
  • $TiO_2$ nanostructures with various morphologies like cubes, spheres, hexahedral pillars and spherical tubes were synthesized by microwave-assisted hydrothermal process. Each structure was obtained by changing the relative concentrations of titanium tetraisoproxide (TTIP), tetrabutylammonium hydroxide (TBAH) and ethanol. Scanning electron microscopy (SEM), transmission electoron microscopy (TEM), X-ray diffraction and Brunauer-Emmett-Teller (BET) surface area analysis were used to characterize the synthesized $TiO_2$ nanostructures. From these results, it has been proved that $TiO_2$ structure could be controlled to have specific morphology, size, surface area, pore volume and pore size distribution.

Morphology of the Conducting Poly-N-vinylcarbazole-coated Silica Gel Nanocomposites

  • Basavaraja, C.;Kim, Na-Ri;Jo, Eun-Ae;Revanasiddappa, M.;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.298-302
    • /
    • 2010
  • We report the effect of surface morphology on the conductivity of the poly-N-vinylcarbazole (PVK)/silica gel ($SiO_2$) nanocomposites as a function of $SiO_2$ weight percentage (%).The polymerization of PVK was initiated by a free-radical polymerization. The surface morphology of the prepared composite shows the incorporation of $SiO_2$ in the prepared PVK-$SiO_2$ (PS) nanocomposites. The conductivity increased from $9.2{\times}10^{-5}S\;cm^{-1}$ to $9.6{\times}10^{-4}S\;cm^{-1}$ with the increase in the percentage of silica gel from 5 to 30%. The nanocomposites show a percolation behavior having a threshold value between 15 and 20%.

The Effects of Ambient Ions on the Growth of Gold Nanoparticles by Laser Ablation in Liquid

  • Kwon, Hyejin;Kim, Kuk Ki;Song, Jae Kyu;Park, Seung Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.865-870
    • /
    • 2014
  • Gold nanoparticles (AuNPs) were synthesized by laser (Nd:YAG, ${\lambda}$ = 1064 nm) ablation of a gold target immersed in various aqueous electrolyte solutions (7 mM of LiCl, NaCl, KCl, NaBr, and NaI) as well as in deionized water. The surface plasmon absorption and EDX of AuNPs so produced as well as their TEM images were analyzed to investigate the effects of ambient ions on the growth and aggregation of NPs. The size of AuNPs was reduced by laser ablation in the presence of chloride and bromide ions while it increased drastically when AuNPs were formed in iodide solution. Interestingly, triangular nanoplates were synthesized only in iodide solution. Surface chemistry on AuNPs in various electrolyte solutions was explored to elucidate the role of ions on the size and stability of AuNPs.

Effects of solution, sorbate, and sorbent chemistries on polycyclic aromatic hydrocarbon sorption to hydrated mineral surfaces

  • Yim, Soobin
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.132-135
    • /
    • 2003
  • Solution chemistry, sorbate chemistry, and sorbent chemistry were widely investigated to find important factors that affect PAH sorption on mineral surfaces and to elucidate its microscopic mechanism. The solution chemistry, pH and ionic strength caused measurable change of HOC sorption reaction to minerals. The detectable change of Ka occurred at a pH region crossing the PZC (Point of Zero Charge) of each mineral. The PAH hydrophobicity, one of sorbate chemistry, was observed to have a strong correlation with PAM sorption to mineral. Mineral surface area was not found to be a predominant factor controlling PAH sorption. The mineral type might be more likely to play a crucial role in controlling the PAH sorption behavior. The CEC (Cation Exchange Capacity) of mineral, representing surface charge density, has meaningful correlation with regression slope of sorption coefficients (log $K_{d}$) versus aqueous activity coefficients (log Υ$_{w}$).).).

  • PDF

Preparation of Ruthenium Incorporated Heterogeneous Catalysts Using Hydroxyapatite as Catalytic Supports for Aerobic Oxidation of Alcohols

  • Kim, Sohee;Jung, Jong-Hwa;Kim, Dong-Hee;Woo, Dong Kyun;Park, Joon B.;Choi, Myong Yong;Kwon, Ki-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.221-224
    • /
    • 2013
  • Three different kinds of hydroxyapatites (HAPs) having different sizes and compositions are prepared by hydrothermal and molten salt syntheses. Using the ion exchange reactions, ruthenium ions are incorporated on the surface of HAPs. The crystallinity, morphology and ruthenium contents are investigated by XRD, SEM, TEM and ICP. We found that smaller size of HAP having large amounts of ruthenium under ion exchange reaction shows higher catalytic activity for aerobic oxidation of alcohols.

Nitric Oxide Sensing Property of Gas Sensor Based on Activated Carbon Fiber Radiated by Electron-beam (전자빔이 조사된 활성탄소섬유 기반 가스센서의 일산화질소 감지 특성)

  • Lee, Sangmin;Jung, Min-Jung;Lee, Kyeong Min;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.299-305
    • /
    • 2017
  • Activated carbon fibers (ACFs) were surface-modified by electron beam (E-beam) irradiation and used as a gas sensor electrode to investigate the effect of E-beam on nitric oxide (NO) gas sensing performance. XPS results showed that the oxygen component of ACFs surface treated by E-beam decreased and $sp^2$ bonded carbon of ACFs surface increased. These results were attributed to the structural transformation of ACFs surface irradiated by E-beam. NO gas sensitivity of the electrode composed of ACFs irradiated by100 kGy increased from about 4% to 8%, and the response time was also meaningfully enhanced from 360 s to 120 s. This is due to the fact that the $sp^2$ carbon bond increased by E-beam irradiation of activated carbon fibers, which significantly affects the resistance change of the electrode in NO gas sensing.

A Multifunctional Surface Fabricated by Polydimethylsiloxane Coated Multi-walled Carbon Nanotubes

  • Yoon, Hye Soo;Kim, Kwang-Dae;Jeong, Myung-Geun;Kim, Dae Han;Park, Eun Ji;Jeong, Bora;Cho, Youn Kyoung;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.167.1-167.1
    • /
    • 2014
  • We report a facile method to fabricate superhydrophobic, transparent and conductive film using multi-walled carbon nanotubes (MWCNTs) which are coated by polydimethylsiloxane (PDMS). In order to prepare a film, PDMS coated MWCNTs were dispersed in solvents and the solution was drop-casted on substrates. It was demonstrated that the PDMS coating enhanced the dispersion of MWCNTs in diverse solvents such as dimethyl formamide(DMF) and acetone without the use of acids or surfactants, which are the common methods. In the case of DMF solvent, dispersion of MWCNT was improved by 40 % upon PDMS-coating of MWCNT. Enhanced dispersion of MWCNTs made it possible to fabricate transparent and conductive film homogeneously on the substrate and PDMS-coating on MWCNTs also made the surface hydrophobic. We can fabricate a uniform and multifunctional MWCNT film (transparent, conductive, superhydrophobic and flexible) which is applicable on large area without any physical damage and expensive equipment.

  • PDF

Preparing Hydrophobic Mesoporous Silica as an Effective Pre-concentration Agent Under Humid Condition

  • Park, Eun Ji;Cho, Youn Kyoung;Jeong, Myung-Geun;Kim, Dae Han;Jeong, Bora;Yoon, Hye Soo;Seo, Hyun Ook;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.159.1-159.1
    • /
    • 2014
  • We report a simple method for preparing hydrophobic mesoporous silica and its use as a pre-concentrating agent of gas analytes. Hydrophobic mesoporous silica was prepared by coating PDMS (polydimethylsiloxane) thin layer on commercial mesoporous silica with thermal deposition method in a sealed chamber. By using this method, we were able to coat PDMS layer on inner-walls of pores larger than 15 nm. Also, contact angle measured on a surface consisting of PDMS-coated mesoporous silica exceeded $150^{\circ}$, implying that the surface has high water repellency. Pre-concentration ability of PDMS-coated mesoporous silica and baremesoporous silica was tested under dry and humid conditions. Adsorption and molecular desorption of gas analytes was much enhanced by PDMS-coating on mesoporous silica under both dry and humid conditions. Therefore we suggest that PDMS-coated mesoporous silica can be an efficient pre-concentration agent in order to enhance sensitivity of various detectors.

  • PDF

Pre-Penetration Behavior of Botryosphaeria dothidea on Apple Fruits

  • Kim, Ki-Woo;Park, Eun-Woo;Ahn, Kyng-Ku
    • The Plant Pathology Journal
    • /
    • v.15 no.4
    • /
    • pp.223-227
    • /
    • 1999
  • Pre-penetration behavior of Boytryosphaeria dothidea on apple fruits was investigated with scanning electron microscopy. Once conidia were deposited on the fruit surface, they germainted and produced germ tubes from one or both ends of the conidia. Germ tubes grew over the fruit surface and entered the fruits through lenticels or surface cracks formed naturally. Germ tubes of the fungus also appeared to penetrated the fruits directly with or without forming appressoria. Globose appressoria were frequently formed at the tip of germ tubes on the fruit surface, where no lenticels or surface cracks were found. The conidia collapsed and became flattened to the fruit surface after appressorial formation. Cuticles of fruit surface underneath appressoria and tips of some germ tubes were evidently altered, indicating possibility of direct penetration of the fungus by enzymatic degradation of the cuticle layers. This the first report on the formation of appressoria by B. dothidea.

  • PDF