• 제목/요약/키워드: Surface and Internal cracks

검색결과 82건 처리시간 0.034초

Behavioral Characteristics of Fatigue Cracks in Small Hole Defects Located on Opposite Sides of the Shaft Cross Section

  • Sam-Hong;Il-Hyuk;Jeong-Moo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권4호
    • /
    • pp.36-42
    • /
    • 2004
  • The shaft with the circular cross section has symmetric structural combination parts to keep the rotating balance. Hence the crack usually initiates from symmetric combination parts due to the stress concentration of these parts. In this study to estimate the fatigue behavior of symmetric cracks, the fatigue test was performed by using a rotary bending tester and the specimen with symmetric defects in circular cross section. The characteristics of crack initiation and propagation on the symmetric surface cracks in circular cross section were examined. We also observed the internal crack using the oxidation coloring method and investigated the fatigue behavior using the relationship between the surface crack and the internal crack. As a result, the fatigue life of symmetric cracks was reduced by 35% compared to that of a single crack. We examined the characteristics of fatigue behavior of elements with symmetric cracks using internal crack propagation rate and maximum stress intensity factor range that were obtained from an approximation method.

축단면 내 대칭위치에 존재하는 원공결함에서 발생하는 피로균열 거동 (The Characteristics of Fatigue Cracks Emanating from Small Hole Defects Located Opposite Position of the Shaft Cross Section)

  • 송삼홍;안일혁;이정무
    • 한국정밀공학회지
    • /
    • 제19권10호
    • /
    • pp.84-91
    • /
    • 2002
  • The shaft with the circular cross section have symmetric structural combination parts to keep the rotating balance. Hence the crack usually emanate from symmetric combination parts due to the stress concentration of these parts. In this study to estimate the fatigue behavior of symmetric cracks, the fatigue test was performed by using rotary bending tester and the specimen with symmetric defects in circular cross section. From the facts the characteristics of crack initiation and propagation on the symmetric surface cracks in circular cross section was examined. Also we observed the internal crack using oxidation coloring and investigated the fatigue behavior using the relationship between surface crack and internal crack. As a result of fatigue lift of symmetric cracks was reduced to 35% compared to single crack’s. We examined the characteristics of fatigue behavior in element with symmetric cracks using internal crack propagation rate and maximum stress intensity factor range obtained from approximation method.

경질양극산화를 실시한 Al5052합금의 내공식성에 미치는 ECAP의 영향 (Effect of Equal Channel Angular Pressing on the Pitting Corrosion Resistance of Hard Anodized Al5052 Alloy)

  • 손인준
    • 한국표면공학회지
    • /
    • 제48권4호
    • /
    • pp.142-148
    • /
    • 2015
  • The effect of equal channel angular pressing (ECAP) on the pitting corrosion resistance of hard anodized Al5052 alloy was investigated. The degree of internal stress generated in anodic oxide films during hard anodization was also evaluated with a strain gauge method. The pitting corrosion resistance of hard anodized Al5052 alloy was greatly decreased by ECAP. Cracks occurred in the anodic oxide film during hard anodization and these cracks were larger and deeper in the alloy with ECAP than without. The pitting corrosion was accelerated by cracks. The internal stress present in the anodic oxide films was compressive and the stress was higher in the alloys with ECAP than without, resulting in an increased likelihood of cracks. The pitting corrosion resistance of hard anodized Al5052 alloy was improved by annealing at the range of 473-573K after ECAP processed at room temperature for four passes. The compressive internal stress gradually decreased with increasing annealing temperature. It is assumed that the improvement in the pitting corrosion resistance of hard anodized Al5052 alloy by annealing may be attributed to a decrease in the likelihood of cracks due to the decreased internal stresses in anodic oxide films.

Direct shear testing of brittle material samples with non-persistent cracks

  • Haeri, Hadi;Sarfarazi, Vahab;Shemirani, Alireza Bagher;Zhu, Zheming
    • Geomechanics and Engineering
    • /
    • 제15권4호
    • /
    • pp.927-935
    • /
    • 2018
  • The mechanical behavior of the brittle material samples containing the internal and edge cracks are studied under direct shear tests. It is tried to investigate the effects of stress interactions and stress intensity factors at the tips of the pre-existing cracks on the failure mechanism of the bridge areas within these cracks. The direct shear tests are carried out on more than 30 various modeled samples each containing the internal cracks (S models) and edge cracks (E models). The visual inspection and a low power microscope are used to monitor the failure mechanisms of the tested samples. The cracks initiation, propagation and coalescences are being visualized in each test and the detected failure surfaces are used to study and measure the characteristics of each surface. These investigations show that as the ratio of the crack area to the total shear surface increases the shear failure mode changes to that of the tensile. When the bridge areas are fixed, the bridge areas in between the edge cracks have less strength than those of internal cracks. However, the results of this study show that for the case of internal cracks as the bridge area is increased, the strength of the material within the bridge area is decreased. It has been shown that the failure mechanism and fracture pattern of the samples depend on the bridge areas because as the bridge area decreases the interactions between the crack tip stress fields increases.

축방향 표면균열이 존재하고 내압을 받는 직관의 J 예측 방법 (J Estimations For Axial Surface Cracked Pipes Under Pressure)

  • 오창식;송태광;김윤재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1824-1829
    • /
    • 2007
  • In the present paper, limit pressures for axial surface cracked pipe are proposed, and a reference stress based J estimation method is also provided based on the proposed limit pressure solutions. Employed cracks are assumed to be constant-depth, internal surface cracks, and wide ranges of variables are considered.

  • PDF

복합하중이 작용하는 원주방향 표면균열배관에 대한 소성한계하중식 (Plastic Limit Load Solutions for Circumferential Surface Cracked Cylinders Under Combined Loading)

  • 심도준;김윤재;김영진;황성식;김정수
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1469-1476
    • /
    • 2003
  • This paper provides plastic limit load solutions of cylinders with circumferential part-through surface cracks under combined axial tension, internal pressure and global bending. Such solutions are developed based on detailed three-dimensional (3-D) finite element (FE) limit analyses using elastic-perfectly-plastic material behaviour, together with analytical solutions based on equilibrium stress fields. For the crack location, both external and internal cracks are considered. Furthermore, in terms of the crack shape, both semi-elliptical and constant-depth surface cracks are considered. The resulting limit load solutions are given in a closed form, and thus can be easily used in practical situations. Being based on detailed 3-D FE limit analysis, the present solutions are believed to most reliable, and thus to be valuable information for integrity assessment of piping.

실린더에 존재하는 축방향 표면균열에 대한 공학적 J-적분식 (II) - 최적참조응력에 기초한 방법- (Engineering J-Integral Estimation for Internal Axial Surface Cracks in Cylinders (II) -Optimised Reference Stress Based Estimation-)

  • 김진수;김윤재;김영진
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2442-2449
    • /
    • 2002
  • This paper provides an reference stress based J estimation equation fur cylinders with finite internal axial surface cracks under internal pressure. In part 1, the J estimation equation based on deformation plasticity using Ramberg-Osgood (R-0) materials is proposed. In this paper, the developed CE/EPRI -type solutions ale then re-formulated based on the reference stress concept. Such a re-formulation provides a simpler equation for J. estimation are then further extended to combined internal pressure and bending. The proposed reference stress based J estimation equation is compared with elastic-plastic 3-D FE results using actual stress-strain data for a Type 304 stainless steel. Good agreement between the FE results and the proposed reference stress based J estimations provides confidence in the use of the proposed method to elastic -plastic fracture mechanics of pressurised piping.

증기발생기 전열관에 존재하는 표면균열의 한계하중 평가 (Evaluation of Limit Loads for Surface Cracks in the Steam Generator Tube)

  • 김현수;김종성;진태은;김홍덕;정한섭
    • 대한기계학회논문집A
    • /
    • 제30권8호
    • /
    • pp.993-1000
    • /
    • 2006
  • Operating experience of steam generators has shown that cracks of various morphology frequently occur in the steam generator tubes. These cracked tubes can stay in service if it is proved that the tubes have sufficient safety margin to preclude the risk of burst and leak. Therefore, integrity assessment using exact limit load solutions is very important for safe operation of the steam generators. This paper provides global and local limit load solutions for surface cracks in the steam generator tubes. Such solutions are developed based on three-dimensional (3-D) finite element analyses assuming elastic-perfectly plastic material behavior. For the crack location, both axial and circumferential surface cracks, and for each case, both external and internal cracks are considered. The resulting global and local limit load solutions are given in polynomial forms, and thus can be simply used in practical integrity assessment of the steam generator tubes.

Numerical analysis of the behaviour of repaired surface cracks with bonded composite patch

  • Merzoug, Mohamed;Boulenouar, Abdelkader;Benguediab, Mohamed
    • Steel and Composite Structures
    • /
    • 제25권2호
    • /
    • pp.209-216
    • /
    • 2017
  • In this paper, the analysis of the behavior of surface cracks in finite-thickness plates repaired with a Boron/Epoxy composite patch is investigated using three-dimensional finite element methods. The stress intensity factor at the crack-front was used as the fracture criteria. Using the Ansys Parametric Design Language (APDL), the stress intensities at the internal and external positions of repaired surface crack were compared. The effects of the mechanical and geometrical properties of the adhesive layer and the composite patch on the variation of the stress intensity factor at the crack-front were examined.

열간 후방압출된 Ti-6Al-4V 튜브의 성형결함 해석 (Assessement of Forming Defects in Hot Backward Extruded Ti-6Al-4V Tube)

  • 염종택;심인규;나영상;박노광;홍성석;심인옥
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.347-350
    • /
    • 2003
  • The metal forming behavior and defect formation in Ti-6Al-4V tube during hot backward extrusion were investigated. To predict the forming-defects such as shear band, inner cracks or surface cracks, dynamic material model(DMM) including Ziegler's instability criterion and modified Cockcroft-Latham fracture criterion(C-L model) were used. These models were coupled to the internal variables generated from FE analysis. The chilling effect and friction indicated a great influence on the deformation mode of the tube and the formation of surface cracks. The simulation results for the backward extrusion were compared with the experimental observations.

  • PDF