• Title/Summary/Keyword: Surface analyses

Search Result 1,886, Processing Time 0.034 seconds

Elastic-Plastic Fracture Mechanics Analyses For circumferential Part-through Surface Cracks At The Interface Between Elbows and Pipes (직관과 곡관의 경계 용접부에 존재하는 원주방향 표면균열에 대한 탄소성 파괴역학 해석)

  • Song, Tae-Kwang;Oh, Chang-Kyun;Kim, Yun-Jae;Kim, Jong-Sung;Jin, Tae-Eun
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1766-1771
    • /
    • 2007
  • This paper presents plastic limit loads and approximate J-integral estimates for circumferential part-through surface crack at the interface between elbows and pipes. Based on finite element limit analyses using elastic-perfectly plastic materials, plastic limit moments under in-plane bending are obtained and it is found that they are similar those for circumferential part-through surface cracks in the center of elbow. Based on present FE results, closed-form limit load solutions are proposed. Welds are not explicitly considered and all materials are assumed to be homogeneous. And the method to estimate the elastic-plastic J-integral for circumferential part-through surface cracks at the interface between elbows and straight pipes is proposed based on the reference stress approach, which was compared with corresponding solutions for straight pipes.

  • PDF

Study of PEO Process for Al 7075 and Effect of additives (알루미늄 7075 합금의 PEO 처리 기술 및 첨가제 영향 분석)

  • Jin, Yun-Ho;Yang, Jae-Kyo
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.2
    • /
    • pp.53-58
    • /
    • 2020
  • In this study, we developed plasma electrolytic oxidation (PEO) process for aluminum 7075 alloy to improve the corrosion and mechanical properties. The electrolyte consists of potassium hydroxide and sodium silicate. Additionally, sodium stannate was added into the electrolyte to investigate its effect on PEO film formation. Titanium was used as the counter electrode. Plasma generation voltage reduced from 300V to 150 V by adding 4 g/L of sodium stannate. The thin oxide films were observed by SEM(Scanning Electron Microscopy)/EDS (Energy Dispersive Spectroscopy) for quantitative and qualitative analyses. XRD (X-ray diffraction) and XRF (X-ray Fluorescences) analyses were also carried out to identify oxide layer on aluminum 7075 surface. Vicker's hardness test was performed on the PEO-treated aluminum 7075 surface.

Statistical characterisation of end milling of AISI 52100 annealed bearing steel

  • Benghersallah, Mohieddine;Benchiheub, Slimane;Amirat, Abdelaziz
    • Advances in materials Research
    • /
    • v.7 no.2
    • /
    • pp.137-148
    • /
    • 2018
  • The present paper is a contribution in characterising end milling process of AISI 52100 ball bearing steel through statistical analyses of variance (ANOVA). The latter has been performed to identify the effect of the cutting parameters on the machined surface roughness and the cutting tool life. Wear measurements have been carried on multilayer coated carbide inserts and the respective surface roughness has been recorded. Taguchi's technique has been adapted to conduct the design experiments in terms of orthogonal arrays according to the cutting parameters (cutting speed, feed rate and depth of cut), the type of coating (TiN, TiCN, TiAlN) and lubricating condition. Regression analyses have conducted to the development of simplified empirical models that can be effectively used to predict surface roughness and tool wear in the present milling process.

Evaluation of Surface-Breaking Crack Based on Laser-Generated Ultrasonics and Wavelet Transform (레이저 초음파와 Wavelet변환을 이용한 재료표면균열 평가)

  • Lee, Min-Rae;Choi, Sang-Woo;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.152-162
    • /
    • 2001
  • Laser-generated ultrasonic technique which is one of the reliable nondestructive evaluation techniques has been applied to evaluate the integrity of structures by analyzing the characteristics of signal obtained from surface crack. Therefore, the signal analysis of the laser-generated ultrasonics is absolutely necessary for the accurate and quantitative estimation of the surface defects. In this study, one-sided measurement by laser-generated ultrasonic has been applied to evaluate the depth of the surface-breaking crack in the materials. However, since the ultrasonic waveform excited by pulse laser is very difficult to distinguish the defect signals, it is necessary to consider the signal analyses of the transient waveform. Wavelet Transform(WT) is a powerful tool for processing transient signals with temporally varying spectra that helps to resolve high and low frequency transient components effectively. In this paper, the analyses of the surface-breaking crack of the ultrasonic signal excited by pulse laser are presented by employing the WT analyses.

  • PDF

SURFACE ANALYSES OF TITANIUM SUBSTRATE MODIFIED BY ANODIZATION AND NANOSCALE Ca-P DEPOSITION

  • Lee, Joung-Min;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.795-804
    • /
    • 2007
  • Statement of problem. Nano-scale calcium-phosphate coating on the anodizing titanium surface using ion beam-assisted deposition (IBAD) has been recently introduced to improve the early osseointegration. However, not much is known about their surface characteristics that have influence on tissue-implant interaction. Purpose. This study was aimed to investigate microtopography, surface roughness, surface composition, and wettability of the titanium surface modified by the anodic oxidation and calcium phosphate coating using IBAD. Material and methods. Commercially pure titanium disks were used as substrates. The experiment was composed of four groups. Group MA surfaces represented machined surface. Group AN was anodized surface. Group CaP/AN was anodic oxidized and calcium phosphate coated surfaces. Group SLA surfaces were sandblasted and acid etched surfaces. The prepared titanium discs were examined as follows. The surface morphology of the discs was examined using SEM. The surface roughness was measured by a confocal laser scanning microscope. Phase components were analyzed using thin-film x-ray diffraction. Wettability analyses were performed by contact angle measurement with distilled water, formamide, bromonaphtalene and surface free energy calculation. Results. (1) The four groups showed specific microtopography respectively. Anodized and calcium phosphate coated specimens showed multiple micropores and tiny homogeneously distributed crystalline particles. (2) The order of surface roughness values were, from the lowest to the highest, machined group, anodized group, anodized and calcium phosphate deposited group, and sandblasted and acid etched group. (3) Anodized and calcium phosphate deposited group was found to have titanium and titanium anatase oxides and exhibited calcium phosphorous crystalline structures. (4) Surface wettability was increased in the order of calcium phosphate deposited group, machined group, anodized group, sandblasted and acid etched group. Conclusion. After ion beam-assisted deposition on anodized titanium, the microporous structure remained on the surface and many small calcium phosphorous crystals were formed on the porous surface. Nanoscale calcium phosphorous deposition induced roughness on the microporous surface but hydrophobicity was increased.

Remaining volume after smoothing(RVAS) variation according to runout (런아웃의 양에 따른 잔류 부피의 변화)

  • Kim M.T.;Lee H.S.;Je S.U.;Chu C.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1248-1252
    • /
    • 2005
  • Mold-manufacturing process consists of machining and finishing process that are strongly related in each other. But there are few studies about mold-manufacturing process to control those two processes simultaneously. Especially, runout distorts the machined surface from expected so it changes the finishing process and mold-manufacturing time. In this work, basic analyses and experiments were carried out to study RVAS variation according to runout in HSM. To perform those analyses, firstly surface generation analysis was done including runout in ball end milling and then the RVAS that could relate machining and finishing process was proposed. And the optimal finishing process in HSM according to RVAS was also proposed. Through experiment runout occurrence and above analyses were verified.

  • PDF

The 3D Surface Crack-Front Constraints in Welded Joins (용접부 3차원 표면균열선단에서의 구속상태)

  • Lee, Hyeong-Il;Seo, Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.144-155
    • /
    • 2000
  • 초록 The validity, of a single parameter such as stress intensity, factor K or J-integral in traditional fracture mechanics depends strongly on the geometry, and loading condition. Therefore the second parameter like T-stress measuring the stress constraint is additionally needed to characterize the general crack-tip fields. While many, research works have been done to verify, the J-T description of elastic-plastic crack-tip stress fields in plane strain specimens, limited works (especially. for bimaterials) have been performed to describe the structural surface crack-front stress fields with the two parameters. On this background, via detailed three dimensional finite element analyses for surface-cracked plates and straight pipes of homogeneous materials and bimaterials under various loadings, we investigate the extended validity or limitation of the two parameter approach. We here first develop a full 3D mesh generating program for semi-elliptical surface cracks, and calculate elastic T-stress from the obtained finite element stress field. Comparing the J-T predictions to the elastic-plastic stresses from 3D finite element analyses. we then confirm the extended validity of fracture mechanics methodology based on the J-T two parameters in characterizing the surface crack-front fields of welded plates and pipes under various loadings.

Engineering J-Integral Estimation for Semi-Elliptical Surface Cracked Plates in Tension (인장하중이 작용하는 평판에 존재하는 반타원 표면균열의 J-적분 계산식)

  • Sim, Do-Jun;Kim, Yun-Jae;Choe, Jae-Bung;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1777-1784
    • /
    • 2001
  • This paper provides d simplified engineering J estimation method fur semi-e1liptical surface cracked plates in tension, based on the reference stress approach. Note that the essential element of the reference stress approach is the plastic limit lead in the definition of the reference stress. However, for surface cracks, the definition of the limit load is ambiguous ("local" or "global"limit lead), and thus the most relevant limit load (and thus reference stress) for the J estimation should be determined. In the present work, such limit load solution is found by comparing reference stress bated J results with those from extensive 3-D finite element analyses. Validation of the proposed equation against FF J results based on tactual experimental tensile data of a 304 stainless steel shows excellent agreements not only far the J values at the deepest point but also for those at an arbitrary paint along the crack front, including at the surface point. Thus the present results provide a good engineering tool for elastic-plastic fracture analyses of surface cracked plates in tension.

Prediction of fully plastic J-integral for weld centerline surface crack considering strength mismatch based on 3D finite element analyses and artificial neural network

  • Duan, Chuanjie;Zhang, Shuhua
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.354-366
    • /
    • 2020
  • This work mainly focuses on determination of the fully plastic J-integral solutions for welded center cracked plates subjected to remote tension loading. Detailed three-dimensional elasticeplastic Finite Element Analyses (FEA) were implemented to compute the fully plastic J-integral along the crack front for a wide range of crack geometries, material properties and weld strength mismatch ratios for 900 cases. According to the database generated from FEA, Back-propagation Neural Network (BPNN) model was proposed to predict the values and distributions of fully plastic J-integral along crack front based on the variables used in FEA. The determination coefficient R2 is greater than 0.99, indicating the robustness and goodness of fit of the developed BPNN model. The network model can accurately and efficiently predict the elastic-plastic J-integral for weld centerline crack, which can be used to perform fracture analyses and safety assessment for welded center cracked plates with varying strength mismatch conditions under uniaxial loading.