• Title/Summary/Keyword: Surface albedo

Search Result 134, Processing Time 0.029 seconds

Sensitivity of Aerosol Optical Parameters on the Atmospheric Radiative Heating Rate (에어로졸 광학변수가 대기복사가열률 산정에 미치는 민감도 분석)

  • Kim, Sang-Woo;Choi, In-Jin;Yoon, Soon-Chang;Kim, Yumi
    • Atmosphere
    • /
    • v.23 no.1
    • /
    • pp.85-92
    • /
    • 2013
  • We estimate atmospheric radiative heating effect of aerosols, based on AErosol RObotic NETwork (AERONET) and lidar observations and radiative transfer calculations. The column radiation model (CRM) is modified to ingest the AERONET measured variables (aerosol optical depth, single scattering albedo, and asymmetric parameter) and subsequently calculate the optical parameters at the 19 bands from the data obtained at four wavelengths. The aerosol radiative forcing at the surface and the top of the atmosphere, and atmospheric absorption on pollution (April 15, 2001) and dust (April 17~18, 2001) days are 3~4 times greater than those on clear-sky days (April 14 and 16, 2001). The atmospheric radiative heating rate (${\Delta}H$) and heating rate by aerosols (${\Delta}H_{aerosol}$) are estimated to be about $3\;K\;day^{-1}$ and $1{\sim}3\;K\;day^{-1}$ for pollution and dust aerosol layers. The sensitivity test showed that a 10% uncertainty in the single scattering albedo results in 30% uncertainties in aerosol radiative forcing at the surface and at the top of the atmosphere and 60% uncertainties in atmospheric forcing, thereby translated to about 35% uncertainties in ${\Delta}H$. This result suggests that atmospheric radiative heating is largely determined by the amount of light-absorbing aerosols.

A Study on the Improvement of Heavy Rainfall Model Based on the Ground Surface Data and Cloud Physics (지표자료와 구름물리를 토대로 한 호우모형의 개선에 관한 연구)

  • 김운중;이재형
    • Water for future
    • /
    • v.28 no.6
    • /
    • pp.229-236
    • /
    • 1995
  • The physically based heavy rainfall model developed by Ceon(1994) for storm events is modified in this study. The main parts of this paper are composed of modeling saturation vapor pressure, cloud thickness, cloud top pressure. In a different way from the previous model, cloud top temperature and albedo measured by satellite are used as input data to the model. In this paper, the defect of saturation vapor pressure equation in the previous model was improved. Furthermore, the parameters for temperature and pressure on cloud top are eliminated as well as the time of calculation in the model is decreased. Also, the results show that there are very small gab between the hourly calculated.

  • PDF

The Planning of Micro-climate Control by Complex Types (단지 유형에 따른 도시의 미기후 조절 계획에 관한 연구)

  • Jeong, Juri;Chung, Min Hee
    • KIEAE Journal
    • /
    • v.17 no.1
    • /
    • pp.49-54
    • /
    • 2017
  • Purpose: Temperature in urban areas increase much more than suburban areas and it is called urban heat island (UHI) phenomenon. There are several solutions to control UHI phenomenon such as green roof system, water space construction, and cool roof system. However, application of green roof system and cool roof system to some of the buildings which compose the city has a critical limit. Therefore, in order to diminish the temperature rising and UHI phenomenon due to climate change of the city, it needs to approach from the viewpoint of site or city, rather than the viewpoint of individual buildings. This study is aims at analyzing UHI phenomenon by characteristics of surface materials and suggesting the solutions to reduce UHI phenomenon by types of complex. Method: Literature reviews were conducted to analyze the cause, mitigating plan, and recent trends of UHI phenomenon. For the simulation analysis, the type of complex was classified 3 representative complex. Based on measured reflectivity, simulation about UHI phenomenon was conducted by setting 4 strategies; albedo of roof, road pavement, green roof system, and vegetating around buildings. Result: As the results of simulating the UHI reduction factor by types of complex, it showed that the effect of temperature reduction on the building roof layer is more effective than adjusting the reflectivity of buildings such as green roof system, planting near the buildings in both the detached house complex, apartment complex, and commercial complex.

해석적 방법을 이용한 Worst Hot 조건에서 질량변화의 여부에 따른 발사시 열해석

  • Kim, Hui-Kyung;Choi, Joon-Min;Hyun, Bum-Seok
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.42-49
    • /
    • 2004
  • Analytical solutions are developed to predict temperature of a satellite box during launch stage under the assumption of worst hot condition. The considered time period is from fairing jettison to separation of satellite during launch stage. After fairing jettison, a box mounted on outer surface of satellite are exposed to space environments such as direct solar flux, Earth IR, Albedo, and free molecular heating. The thermal governing equation is simplified to 1st order ordinary differential equation such that analytic solutions are acquired after the box is assumed as a single lumped mass. The analytical solutions are also available for mass varying box. Finally, the practical application is performed for the case of STSAT-1 launch scenario.

  • PDF

Analysis of Radiative Heat Transfer about a Circular Cylinder in a Crossflow by P-l Approximation and Finite Volume Method in Non-Orthogonal Coordinate System (비직교좌표계에 대한 P-1 근사법 및 유한체적법을 이용한 주유동 중의 원형실린더 주위의 복사열전달 해석)

  • 이공훈;이준식;최만수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.806-819
    • /
    • 1995
  • A study of radiative heat heat transfer has been done in the non-orthogonal coordinate system utilizing the finite volume method and the P.1 approximation. Radiation of absorbing, emitting and scattering media in a concentric annulus has been solved using the non-orthogonal coordinate and the calculations were compared with the existing results. The results obtained from the analysis using the finite volume method are in good agreement with the existing calculations for all optical thicknesses. It was also shown that for only optically thick cases, P-1 approximation can be used in a non-orthogonal coordinate. Convective heat transfer analysis has been carried out to obtain the temperature fields in a cross flow around a circular cylinder and the finite volume method was applied in the non-orthogonal coordinate system to analyze radiative heat transfer. Effects of the optical thickness, the ratio of the surface temperature of the cylinder tot he free stream temperature, and the scattering albedo on radiation have been presented.

Radiation Streaming in KNU-1 Reactor Cavity (고리 1호기 원자로 공동에서의 방사선 흐름 현상 해석)

  • Kun-Woo Cho;Chang-Soon Kang
    • Nuclear Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.27-37
    • /
    • 1986
  • The neutron fluxes and dose rates due to radiation streaming from reactor cavities were evaluated at the KNU-1 reactor pressure vessel (RPY) head flange elevation. To find a suitable cross section data set for the evaluation, a benchmark test was performed for three data sets; DLC-23/CASK, DLC-31/FEWG, and DLC-47/BUGLE. The leakage fluxes from the KNU-1 RPV outer surface were calculated with two different methods: 1-D calculation with ANISN, and 2-D calculation with DOT3.5. The Monte Carlo procedures as embodied in the MORSE-CG code combined with the albedo option were applied to predict the radiation distributions in the cavity region. Finally, the activation analysis of the stud bolts was performed to identify the major activation products.

  • PDF

KEEP-North : Kirkwood Excitation and Exile Patrol of the Northern Sky (보현산 천문대 소행성 관측 연구)

  • Kim, Myung-Jin;Choi, Young-Jun;Moon, Hong-Kyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.61.3-62
    • /
    • 2016
  • An asteroid family is a group of asteroidal objects in the proper orbital element space (a, e, and i), considered to have been produced by a disruption of a large parent body through a catastrophic collision. Family members usually have similar surface properties such as spectral taxonomy types, colors, and visible geometric albedo with a same dynamical age. Therefore an asteroid family could be called as a natural Solar System laboratory and is also regarded as a powerful tool to investigate space weathering and non-gravitational phenomena such as the Yarkovsky/YORP effects. We carry out time series photometric observations for a number of asteroid families to obtain their physical properties, including sizes, shapes, rotational periods, spin axes, colors, and H-G parameters based on nearly round-the-clock observations, using several 0.5-2 meter class telescopes in the Northern hemisphere, including BOAO 1.8 m, LOAO 1.0 m, SOAO 0.6 m facilities in KASI, McDonald Observatory 2.1 m instrument, NARIT 2.4 m and TUG 1.0 m telescopes. This study is expected to find, for the first time, some important clues on the collisional history in our Solar System and the mechanisms where the family members are being transported from the resonance regions in the Main-belt to the near Earth space.

  • PDF

Cloud Cover Analysis from the GMS/S-VISSR Imagery Using Bispectral Thresholds Technique (GMS/S-VISSR 자료로부터 Bispectral Thresholds 기법을 이용한 운량 분석에 관하여)

  • 서명석;박경윤
    • Korean Journal of Remote Sensing
    • /
    • v.9 no.1
    • /
    • pp.1-19
    • /
    • 1993
  • A simple bispectral threshold technique which reflects the temporal and spatial characteristics of the analysis area has been developed to classify the cloud type and estimate the cloud cover from GMS/S-VISSR(Stretched Visible and Infrared Spin Scan Radiometer) imagery. In this research, we divided the analysis area into land and sea to consider their different optical properties and used the same time observation data to exclude the solar zenith angle effects included in the raw data. Statistical clear sky radiance(CSRs) was constructed using maximum brightness temperature and minimum albedo from the S-VISSR imagery data during consecutive two weeks. The CSR used in the cloud anaysis was updated on the daily basis by using CSRs, the standard deviation of CSRs and present raw data to reflect the daily variation of temperature. Thresholds were applied to classify the cloud type and estimate the cloud cover from GMS/S-VISST imagery. We used a different thresholds according to the earth surface type and the thresholds were enough to resolve the spatial variation of brightness temperature and the noise in raw data. To classify the ambiguous pixels, we used the time series of 2-D histogram and local standard deviation, and the results showed a little improvements. Visual comparisons among the present research results, KMA's manual analysis and observed sea level charts showed a good agreement in quality.

Optical telescope with spectro-polarimetric camera on the moon

  • KIM, Ilhoon;HONG, Sukbum;KIM, Joohyun;Seo, Haingja;Kim, Jeong hyun;Choi, Hwajin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.78.1-78.1
    • /
    • 2021
  • A Lunar observatory not only provides ideas and experiences for space settlements from the Moon to Mars, but also puts the telescope in an optimal position to compete with space telescopes. Earth observation on the Moon's surface has the advantage of no atmospheric scattering or light pollution and is a stable fuel-free observation platform, allowing all longitude and latitude of the Earth to be observed for a month. Observing the entire globe with a single observation instrument, which has never been attempted before, and calculating the global albedo will significantly help predict the weather and climate change. Spectropolarimetric observations can reveal the physical and chemical properties of the Earth's atmosphere, track the global distribution and migration path of aerosols and air pollutants, and can also help detect very small space debris of which the risk has increased recently. In addition, the zodiacal light, which is difficult to observe from Earth, is very easy to observe from the lunar observatory, so it will be an opportunity to reveal the origin of the solar system and take a step closer to understanding the exoplanet system. In conclusion, building and developing a lunar observatory will be a groundbreaking study to become the world's leader that we have never tried before as a first step in expanding human experience and intelligence.

  • PDF

Analysis of Vertical Profiles and Optical Characteristics of the Asian Dust Using Ground-based Measurements (지상관측장비를 이용하여 관측한 봄철 황사의 연직분포와 광학적 특성 분석)

  • Lee, Byung-Il;Yoon, Soon-Chang;Kim, Yoonjae
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.287-297
    • /
    • 2008
  • The vertical profiles and optical properties of Asian dust are investigated using ground-based measurements from 1998 to 2002. Vertical profiles of aerosol extinction coefficient are evaluated using MPL (Micro Pulse Lidar) data. Optical parameters such as aerosol optical thickness ($\tau$), ${\AA}ngstr\ddot{o}m$ exponent ($\alpha$), single scattering albedo ($\omega$), refractive index, and volume size distribution are analyzed with sun/sky radiometer data for the same period. We can separate aerosol vertical profiles into three categories. First category named as 'Asian dust case', which aerosol extinction coefficient is larger than $0.15km^{-1}$ and dust layer exists from surface up to 3-4km. Second category named as 'Elevated aerosol case', which aerosol layer exists between 2 and 6km with 1-2.5km thickness, and extinction coefficient is smaller than $0.15km^{-1}$. Third category named as 'Clear sky case', which aerosol extinction coefficient appears smaller than $0.15km^{-1}$. and shows that diurnal variation of background aerosol in urban area. While optical parameters for first category indicate that $\tau$ and $\alpha$ are $0.63{\pm}0.14$, $0.48{\pm}0.19$, respectively. Also, aerosol volume concentration is increased for range of 1 and $4{\mu}m$, in coarse mode. Optical parameters for second category can be separated into two different types. Optical properties of first type are very close to Asian dust cases. Also, dust reports of source region and backward trajectory analyses assure that these type is much related with Asian dust event. However, optical properties of the other type are similar to those of urban aerosol. For clear sky case, $\tau$ is relatively smaller and $\alpha$ is larger compare with other cases. Each case shows distinct characteristics in aerosol optical parameters.