• 제목/요약/키워드: Surface aerators

검색결과 4건 처리시간 0.018초

Investigations of Mixing Time Scales in a Baffled Circular Tank with a Surface Aerator

  • Kumar, Bimlesh;Patel, Ajey;Rao, Achanta
    • Environmental Engineering Research
    • /
    • 제16권1호
    • /
    • pp.47-51
    • /
    • 2011
  • The oxygen transfer rate is a parameter that characterizes the gas-liquid mass transfer in surface aerators. Gas-liquid transfer mechanisms in surface aeration tanks depend on two different extreme lengths of time; namely, macromixing and micromixing. Small scale mixing close to the molecular level is referred to as micromixing; whereas, macromixing refers to mixing on a large scale. Using experimental data and numerical simulations, macro- and micro-scale parameters describing the two extreme time scales were investigated. A scale up equation to simulate the oxygen transfer rate with micromixing times was developed in geometrically similar baffled surface aerators.

댐저수지의 남조류 수화에 대한 간헐식 폭기장치의 효과 (Effect of Hydraulic-Gun-Aerators on Cyanobacterial Bloom in a Dam Reservoir)

  • 이정호
    • ALGAE
    • /
    • 제19권1호
    • /
    • pp.23-30
    • /
    • 2004
  • The purpose of this study is to assess the effects that hydraulic-gun-aerators have on cyanobactedial bloom in Sayeon Dam Reservoir in Ulsan City, Korea. A total of nine hydraulic-gun-aerators are in operation at the reservoir withe 100 m spacing between each aerator to control severe cyanobacterial bloom in the dam reservoir. The field studies were performed an total four times at two sampling stations in the reservoir from July to August in 2001. The standing crops of phytoplankton did not changed significantly by the operation. The cell concentration of the cyanobacteria at the surface layer were reduced about 10%, which is a poor result for the dispersing cyandobacteria deeper into the water. The average surface temperature during the study was reduced by 2.0$^{\circ}C$ by the hydraulic-gun-aerators. The effect of the operation on the vertical distribution of DO concentration was clear. However, the hydraulic-gun-aerators were not expected to have an effect in the lowest layer of the hypolimnion. In the study, it was proposed that installation distance between each hydraulic-gun-aerator would be proper when they are apart about 120 m based on DO depth profiles.

횡성호 식물플랑크톤에 대한 간헐식 폭기의 영향과 선택취수 (Effect on Phytoplankton by Hydraulic-Gun-Aerators and Selective Withdrawal in Hoengseung Reservoir)

  • 최일환;김학철
    • 환경영향평가
    • /
    • 제16권1호
    • /
    • pp.15-26
    • /
    • 2007
  • Surface water is the main drinking water source in Korea. Algal bloom caused by phytoplankton in reservoir is common event in every summer season. To prevent or control the algal blooms, artificial circulation system has been adopted in many reservoirs, including Hoengseung reservoir. Total 7 hydraulic-gun-aerators were installed around the intake tower in Hoengseung reservoir since 2000. This study is to elucidate the effects of hydraulic-gun-aerators on phytoplankton bloom, pH, DO, temperature and evaluate the selective withdrawal and vertical distribution of phytoplankton by means of submersible fluorescence probe, which features high correlation with a standard ISO method (r=0.90, P<0.0001) for chlorophyll-a quantification.

간헐식 폭기형 수체순환장치 모델링 (A Modeling of Intermittent-Hydraulic-Gun-Aerator)

  • 송무석;서동일
    • 대한조선학회논문집
    • /
    • 제42권3호
    • /
    • pp.183-189
    • /
    • 2005
  • A modeling of a hydraulic-gun-aerator is proposed to set up a design procedure for such devices. The aerators are used to destroy any thermal stratification that are responsible for the degradation of water qualify of lakes. The aerator produces ascending flow by using air bubbies released instantly near the bottom of the lake into a cylindrical pipe installed vertically. Differently form the diffuser-aerators, they can pull up the cold, oxygen depleted water directly to the region of the free surface, and they are believed to work effectively especially for relatively deeper lakes. Their design procedure has not been established yet though, and we propose a model focusing on the exit flow velocity at the top of the aerator through the examination of presently operating devices.