• Title/Summary/Keyword: Surface activity

Search Result 3,378, Processing Time 0.035 seconds

Composition Comprising the Extract of Anethi Fructus for the Treatment and Protection of Immune Activity (시라자 추출물을 함유하는 면역질환의 치료 및 예방을 위한 면역증강용 조성물)

  • Park, Gil-Soon;Chang, In-Ae;Kim, Youn-Chul;Lee, Moo-Hyung;Shin, Hye-Young;Choi, Du-Young;Yun, Yong-Gab;Park, Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.700-704
    • /
    • 2007
  • In the recent, increased concern has been focused on the pharmacology and clinical utility of herbal extracts and derivatives as a drug or adjunct to chemotherapy and immunotherapy. Here we investigated the role of the extract of Anethi Fructus in the expression of inflammatory mediators, surface molecule, and related receptors in vitro. In murine macrophage RAW 264.7 cells and peritoneal macrophages of C57BL/6N mice, water extract of Anethi Fructus increased the production of secretary tumor necrosis factor (TNF)-a and Nitric oxide (NO), and the expression level of CD14, LPS co-receptor and CD86, co-stimulatory molecule compared to negative natural extract ex vivo. The water extract of Anethi Fructus increased the production of interferon (IFN)-g from splenocytes. Also, water extract of Anethi Fructus increased ConA-induced cell proliferation. These results suggest that water extract of Anethi Fructus may enhance the immune response through immune modulation of macrophage and lymphocytes.

Expression of peroxisome proliferator activated receptor gamma in the neuronal cells and modulation of their differentiation by PPAR gamma agonists

  • Hong, Jin-Tae
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.14-40
    • /
    • 2002
  • 15-Deoxy- Δ$\^$12,14/-prostaglandin J$_2$ (15-deoxy-PGJ$_2$), a naturally occurring ligand activates the peroxisome proliferator-activated receptor-${\gamma}$ (PPAR-${\gamma}$). Activation of PPAR-y has been found to induce cell differentiation such as adipose cell and macrophage. Here it was investigated whether 15-deoxy-PGJ$_2$ has neuronal cell differentiation and possible underlying molecular mechanisms. Dopaminergic differentiating PC 12 cells treated with 15-deoxy-PGJ$_2$ (0.2 to 1.6 ${\mu}$M) alone showed measurable neurite extension and expression of neurofilament, markers of cell differentiation. However much greater extent of neurite extension and expression of neurofilament was observed in the presence of NGF (50 ng/$m\ell$). In parallel with its increasing effect on the neurite extension and expression of neurofilament, 15-deoxy-PGJ$_2$ enhanced NGF-induced p38 MAP kinase expression and its phosphorylation in addition to the activation of transcription factor AP-1 in a dose dependent manner. Moreover, pretreatment of SD 203580, a specific inhibitor of p38 MAP kinase inhibited the promoting effect of 15-deoxy-PGJ$_2$ (0.8 ${\mu}$M) on NGF-induced neurite extension. This inhibition correlated well with the ability of SB203580 to inhibit the enhancing effect of 15-deoxy-PGJ$_2$ on the expression of p38 MAP kinase and activation of AP-1. The promoting ability of 15-deoxy-PGJ$_2$ did not occur through PPAR-${\gamma}$, as synthetic PPAR-${\gamma}$ agonist and antagonist did not change the neurite promoting effect of 15-deoxy-PGJ$_2$. In addition, contrast to other cells (embryonic midbrain and SK-N-MC cells), PPAR-${\gamma}$ was not expressed in PC-12 cells. Other structure related prostaglandins, PGD$_2$ and PGE$_2$ acting via a cell surface G-protein-coupled receptor (GPCR) did not increase basal or NGF-induced neurite extension. Moreover, GPCR (EP and DP receptor) antagonists did not alter the promoting effect of 15-deoxy-PGJ$_2$ on neurite extension and activation of p38 MAP kinase, suggesting that the promoting effect of 15-deoxy-PGJ$_2$ may not be mediated GPCR. These data demonstrate that activation of p38 MAP kinase in conjunction with AP-1 signal pathway may be important in the promoting activity of 15-deoxy-PGJ$_2$ on the differentiation of PC12 cells.

  • PDF

Rice OsACDR1 (Oryza sativa Accelerated Cell Death and Resistance 1) Is a Potential Positive Regulator of Fungal Disease Resistance

  • Kim, Jung-A;Cho, Kyoungwon;Singh, Raksha;Jung, Young-Ho;Jeong, Seung-Hee;Kim, So-Hee;Lee, Jae-eun;Cho, Yoon-Seong;Agrawal, Ganesh K.;Rakwal, Randeep;Tamogami, Shigeru;Kersten, Birgit;Jeon, Jong-Seong;An, Gynheung;Jwa, Nam-Soo
    • Molecules and Cells
    • /
    • v.28 no.5
    • /
    • pp.431-439
    • /
    • 2009
  • Rice Oryza sativa accelerated cell death and resistance 1 (OsACDR1) encodes a putative Raf-like mitogen-activated protein kinase kinase kinase (MAPKKK). We had previously reported upregulation of the OsACDR1 transcript by a range of environmental stimuli involved in eliciting defense-related pathways. Here we apply biochemical, gain and loss-of-function approaches to characterize OsACDR1 function in rice. The OsACDR1 protein showed autophosphorylation and possessed kinase activity. Rice plants overexpressing OsACDR1 exhibited spontaneous hypersensitive response (HR)-like lesions on leaves, upregulation of defense-related marker genes and accumulation of phenolic compounds and secondary metabolites (phytoalexins). These transgenic plants also acquired enhanced resistance to a fungal pathogen (Magnaporthe grisea) and showed inhibition of appressorial penetration on the leaf surface. In contrast, loss-of-function and RNA silenced OsACDR1 rice mutant plants showed downregulation of defense-related marker genes expressions and susceptibility to M. grisea. Furthermore, transient expression of an OsACDR1:GFP fusion protein in rice protoplast and onion epidermal cells revealed its localization to the nucleus. These results indicate that OsACDR1 plays an important role in the positive regulation of disease resistance in rice.

Physiochemical and Antimicrobial Activity of Garlic Cultivar (품종별 마늘의 이화학적 특성 및 항균활성)

  • Jeong, Woo-Jae;Kang, Min-Jung;Yoon, Hwan-Sik;Sung, Nak-Ju;Shin, Jung-Hye
    • Journal of agriculture & life science
    • /
    • v.46 no.5
    • /
    • pp.91-100
    • /
    • 2012
  • Physicochemical and antimicrobial activities of 12 different garlic cultivars were investigated. Width and weight of California late cultivar (60.44mm, 53.73g) was the biggest and heaviest but Changyoung cultivar (44.04mm, 25.15g) was the smallest and lightest among the variety of garlic. The range of L, a and b color characteristics of garlic surface from different variety were 84.13~90.56, -1.10~0.77 and 18.24~26.61, respectively. Shear force was the lowest in California early, but 94-12-2 cultivar ($4211.35cm/kg^2$) was higher than another cultivars. Soluble solid range was 6.40~11.33 %brix, and Changyoung cultivar was the highest than the others, significantly. pH of garlics from different cultivar were 5.57~6.53. Total thiosulfinate content of California late cultivar (146.05mM/g) was higher, but Italy cultivar (93.23mM/g) was lower than the others. Total pyruvate content was the highest in Yugo cultivar ($162.50{\mu}M/g$) and the lowest in California early cultivar ($147.41{\mu}M/g$).

Estimating Worst Case Flood and Inundation Damages under Climate Change

  • Kim, Sunmin;Tachikawa, Yasuto;Nakakita, Eiichi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.189-189
    • /
    • 2016
  • To generate information that contributes to climate change risk management, it is important to perform a precise assessment on the impact in diverse aspects. Considering this academic necessity, Japanese government launched continuous research project for the climate change impact assessment, and one of the representative project is Program for Risk Information on Climate Change (Sousei Program), Theme D; Precise Impact Assessment on Climate Change (FY2012 ~ FY2016). In this research program, quantitative impact assessments have been doing from a variety of perspectives including natural hazards, water resources, and ecosystems and biodiversity. Especially for the natural hazards aspect, a comprehensive impact assessment has been carried out with the worst-case scenario of typhoons, which cause the most serious weather-related damage in Japan, concerning the frequency and scale of the typhoons as well as accompanying disasters by heavy rainfall, strong winds, high tides, high waves, and landslides. In this presentation, a framework of comprehensive impact assessment with the worst-case scenario under the climate change condition is introduced based on a case study of Theme D in Sousei program There are approx. 25 typhoons annually and around 10 of those approach or make landfall in Japan. The number of typhoons may not change increase in the future, but it is known that a small alteration in the path of a typhoon can have an extremely large impact on the amount of rain and wind Japan receives, and as a result, cause immense damage. Specifically, it is important to assess the impact of a complex disaster including precipitation, strong winds, river overflows, and high tide inundation, simulating how different the damage of Isewan Typhoon (T5915) in 1959 would have been if the typhoon had taken a different path, or how powerful or how much damage it would cause if Isewan Typhoon occurs again in the future when the sea surface water temperature has risen due to climate changes (Pseudo global warming experiment). The research group also predict and assess how the frequency of "100-years return period" disasters and worst-case damage will change in the coming century. As a final goal in this research activity, the natural disaster impact assessment will extend not only Japan but also major rivers in Southeast Asia, with a special focus on floods and inundations.

  • PDF

The Present Status and Development Plan in the Field of Climate Change Science in Korea analyzed by the IPCC-IV Reports (IPCC-IV 국가 보고서 분석에 의한 한국의 기후변화과학 분야의 현황과 발전방향)

  • Chung, Yun-Ang;Chung, Hyo-Sang;Ryu, Chan-Su
    • Journal of Integrative Natural Science
    • /
    • v.4 no.1
    • /
    • pp.38-43
    • /
    • 2011
  • The recent global warming may be estimated to give lots of impacts to the human society and biosphere of influencing climate change included by the natural climate variations through the human activity which can directly and/or indirectly play a major role of total atmospheric composition overall. Therefore it currently appears evidences such as hot wave, typhoon, and biosphere disturbance, etc. over the several regions to be influenced by global warming due to increasing the concentration of greenhouse gases in the atmosphere through inducing forest destruction, fossil fuel combustion, greenhouse gases emission, etc. since industrial revolution era. Through the working group report of IPCC (Intergovernmental Panel on Climate Change) for climate change was analyzed by the individual country's current status and figure out the important issues and problems related to the future trend of climate change science with advanced countries preparedness and research, In this study, the first working group report of IPCC focuses on those aspects of the current understanding of the physical science of climate change that are judged to be most relevant to policymakers. As this report was assessed and analyzed by including the progress of climate change science, the role of climate models and evolution in the treatment of uncertainties. This consists of the changes in atmospheric constituents(both aerosols and gases) that affect the radiative energy balance in the atmosphere and determine the Earth's climate, considering the interaction between biogeochemical cycles that affect atmospheric constituents and climate change, including aerosol/cloud interactions, the extensive range of observations snow available for the atmosphere and surface, for snow, ice, and frozen ground and for the oceans, respectively and changes in sea level, the paleoclimate perspective and assessment of evidence for past climate change and the extension, the ways in which physical processes are simulated in climate models and the evaluation of models against observed climate, the development plans and methods of improving expert and building manpower urgently and R&D fund expansion in detail for climate change science in Korea will be proposed.

Inhibition of Melanoma Differentiation by Melanogenesis Inhibitor Isolated from Yeast (효모에서 분리한 멜라닌 생성 억제 물질의 세포분화 억제)

  • Choe Taeboo;Lee Seungsun;Jung Hokwon;Chul Oh
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.1 s.49
    • /
    • pp.25-33
    • /
    • 2005
  • Melanocytes synthesize melanin within discrete organelle termed melanosomes which are transferred to the surrounding keratinocytes and can be produced in varying sizes, numbers and densities. Skin whitening products have become increasingly popular in the past few years. The most successful natural skin whitening agents are: arbutin, vitamin C, kojic acid, and mulberry, which are all tyrosinase inhibitors. In this work, melanoston, a melanogenesis inhibitor isolated from yeast was studied to understand its mechanism of melanogenesis inhibition. It was found that melanoston was not a tyrosinase inhibitor, while when melanoston was applied to the B16 melanoma cell culture media, the intracellular tyrosinase activity was decreased by more than $30\%$. When B16 melanoma was stimulated with $\alpha$-MSH, cell morphololgy was dramatically changed to have lots of dendrites on the cell membrane surface. On the other hand, B16 was treated with $\alpha$-MSH and melanoston, simultaneously, the change of cell morphologv was not so great. This inhibitory effect of melanoston was found to be related to the inhibition of intracellar activation and transportation of tyrosinase, which was observed by irmmunostaining of B16 melanoma using anti-tyrosinase antibody. From these results, melanoston was regarded as an inhibitor to the differentiation of melanoma cells.

Effects of Fermentation Pine Needle Extract on the Quality of Plain Bread (솔잎 발효액이 식빵의 품질에 미치는 영향)

  • Choi, Dong-Man;Lee, Dong-Sun;Chung, Sun-Kyung
    • Food Science and Preservation
    • /
    • v.14 no.2
    • /
    • pp.154-159
    • /
    • 2007
  • In efforts to use pine needle extract as a substitute for sugar, fermented pine needle extract syrup was added to the wheat flour nea in the manufacture of white bread The extract was added to levels of 8.3%, 11% and 18% of total weight based on the Brix degree of the dough The cohesion of each dough was checked, and the physical properties and storage stabilities of the baked breads were analyzed during storage at mom temperature. Analysis of the cohesion of each dough by farinogram showed that dough with pine needle extract was better than dough with sugar, in terms of both stability and durability of mixing. The pH of dough with syrup was steady during storage at pH 5.4 5.8, which is favorable for yeast activity. The dough with syrup also showed low firmness and good extensibility, both of which would favorably affect gas retention on fermentation. Increases in syrup addition resulted in higher product volumes. Bread with syrup was slow to increase in hardness during storage, suggesting that higher syrup concentrations inhibited development of staleness. The addition of syrup also inhibited the growth of aerobic bacteria and mold on the bread surface. The addition of syn did not cause any negative effect. The use of pine none extract syrup may thus contribute to improvements the physical properties, the storage stability, and the hygienic quality of bread.

Application of Electrical Resistivity Measurement to an Evaluation of Saline Soil in Cropping Field (염류집적 농경지에서 전기비저항 탐사기법의 활용성)

  • Yoon, Sung-Won;Park, Sam-Gyu;Chun, Hyen-Jung;Han, Keung-Hwa;Kang, Seong-Soo;Kim, Myung-Suk;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1035-1041
    • /
    • 2011
  • Salinity of soil under the plastic film houses in Korea is known as a significant factor to lower the crop production and to hamper the sustainable agricultural land management. In this study we propose a field monitoring technique to examine the methods applied to minimize the adverse effect of salts in soil based on the relationship between soil electrical characteristics and soil properties. Field experiments for 4 different treatments (water only, fertilizer only, DTPA only, and DTPA and fertilizer together) were conducted on soils at the plastic film house built for cultivating a cucumber plant located at Chunan-si, Chungchungnam-do in Korea. The electrical resistivity was measured by both a dipole-dipole and wenner multi-electrodes array method. After the electrical resistivity measurement we also measured the soil water content, temperature, and electrical conductivity on surface soil. The resulted image of the interpreted resistivity by the inversion technique presented a unique spatial distribution depending on the treatment, implying the effect of the different chemical components. It was also highly suspected that resistivity response changed with the nutrients level, suggesting that our proposed technique could be the effective tool for the monitoring soil water as well as nutrient during the cropping period. Especially, subsoils under DTPA treatment at 40 to 60 cm depth typically presented lower soil water accumulation comparing to subsoils under non-DTPA treatment. It is considered that DTPA resulted in increase of a root water uptake. However, our demonstrated results were mainly based on qualitative comparison. Further experiments need to be conducted to monitor temporal changes of electrical resistivity using time lapse analysis, providing that a plant root activity difference based on changes of soil water and nutrients level in time.

Microfluidic Assisted Synthesis of Ag-ZnO Nanocomposites for Enhanced Photocatalytic Activity (광촉매 성능 강화를 위한 미세유체공정 기반 Ag-ZnO 나노복합체 합성)

  • Ko, Jae-Rak;Jun, Ho Young;Choi, Chang-Ho
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.291-296
    • /
    • 2021
  • Recently, there has been increasing demand for advancing photocatalytic techniques that are capable of the efficient removal of organic pollutants in water. TiO2, a representative photocatalytic material, has been commonly used as an effective photocatalyst, but it is rather expensive and an alternative is required that will fulfill the requirements of both high performing photocatalytic activities and cost-effectiveness. In this work, ZnO, which is more cost effective than TiO2, was synthesized by using a microreactor-assisted nanomaterials (MAN) process. The process enabled a continuous production of ZnO nanoparticles (NPs) with a flower-like structure with high uniformity. In order to resolve the limited light absorption of ZnO arising from its large band gap, Ag NPs were uniformly decorated on the flower-like ZnO surface by using the MAN process. The plasmonic effect of Ag NPs led to a broadening of the absorption range toward visible wavelengths. Ag NPs also helped inhibit the electron-hole recombination by drawing electrons generated from the light absorption of the flower-like ZnO NPs. As a result, the Ag-ZnO nanocomposites showed improved photocatalytic activities compared with the flower-like ZnO NPs. The photocatalytic activities were evaluated through the degradation of methylene blue (MB) solution. Scanning electron microscopy (SEM), x-ray diffraction (XRD), and energy-dispersive x-ray spectroscopy (EDS) confirmed the successful synthesis of Ag-ZnO nanocomposites with high uniformity. Ag-ZnO nanocomposites synthesized via the MAN process offer the potential for cost-effective and scalable production of next-generation photocatalytic materials.