• Title/Summary/Keyword: Surface Water Temperature

Search Result 2,819, Processing Time 0.029 seconds

Influence of Temperature on the Fretting Wear of Advanced Nuclear Fuel Cladding Tube against Supporting Grid (온도 상승이 개량형 핵연료 피복관과 지지격자 사이의 프레팅 마멸에 미치는 영향)

  • Lee Young-Ze;Park Yong-Chang;Jeong Sung-Hoon;Kim Jin-Seon;Kim Yong-Hwan
    • Tribology and Lubricants
    • /
    • v.22 no.3
    • /
    • pp.144-148
    • /
    • 2006
  • The experimental investigation was performed to find the associated changes in characteristics of fretting wear with various water temperatures. The fretting wear tests were carried out using the zirconium alloy tubes and the grids with increasing the water temperature. The tube materials in water of $20^{\circ}C,\;50^{\circ}C\;and\;80^{\circ}C$ were tested with the applied load of 20 N and the relative amplitude of $200{\mu}m$. The worn surfaces were observed by SEM, EDX analysis and 2D surface profiler. As the water temperature increased, the wear volume was decreased, but oxide layer was increased on the worn surface. The abrasive wear mechanism was observed at water temperature of $20^{\circ}C$ and adhesive wear mechanism occurred at water temperature of $50^{\circ}C,\;80^{\circ}C$. As the water temperature increased, surface micro-hardness was decreased, but wear depth and wear width were decreased due to increasing stick phenomenon. Stick regime occurred due to the formation of oxide layer on the worn surface with increasing water temperatures

Pattern Analysis of Sea Surface Temperature Distribution in the Southeast Sea of Korea Using a Weighted Mean Center (가중공간중심을 활용한 한국 남동해역의 표층수온 분포 패턴 분석)

  • KIM, Bum-Kyu;YOON, Hong-Joo;KIM, Tae-Hoon;CHOI, Hyun-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.263-274
    • /
    • 2020
  • In the Southeast Sea of Korea, a cold water mass is formed intensively in summer every year, causing frequent abnormal sea conditions. In order to analyze the spatial changes of sea surface temperature distribution in this area, ocean fields buoy data observed at Gori and Jeongja and reanalyzed sea surface temperature(SST) data from GHRSST Level 4 were used from June to September 2018. The buoy data were used to analyze the time-series water temperature changes at two stations, and the GHRSST data were used to calculate the daily SST variance and weighted mean center(WMC) across the study area. When the buoy's water temperature was lowered, the variance of SST in the study area trend to increase, but it did not appear consistently for the entire period. This is because GHRSST is a reanalysis data that does not reflect sensitive changes in water temperature along the coast. As such, there is a limit to grasping the local small-scale water temperature change in the coast or detecting the location and extent of the cold water zone only by the statistical variance representing the SST change in the entire sea area. Therefore, as a result of using WMC to quantitatively determine the spatial location of the cold water mass, when the cold water zone occurred, WMC was located in the northwest sea area from the mean center(MC) of the study area. This means that it is possible to quantitatively identify where and to what extent the distribution of cold surface water temperature appears through SST's WMC location information, and we could see the possibility of WMC's use in detecting the scale of cold water zones and the extent of regional spread in the future.

The Change Detection of SST of Saemangeum Coastal Area using Landsat and MODIS (Landsat TM과 MODIS 영상을 이용한 새만금해역 표층수온 변화 탐지)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.2
    • /
    • pp.199-205
    • /
    • 2011
  • The Saemangeum embankment construction have changed the flowing on the topography of the coastal marine environment. However, the variety of ecological factors are changing from outside of Saemangeum embankment area. The ecosystem of various marine organisms have led to changes by sea surface temperature. The aim of this study is to monitoring of sea surface temperature(SST) changes were measured by using thermal infrared satellite imagery, MODIS and Landsat. The MODIS data have the high temporal resolution and Landsat satellite data with high spatial resolution was used for time series monitoring. The extracted informations from sea surface temperature changes were compared with the dyke to allow them inside and outside of Saemangeum embankment. The spatial extent of the spread of sea water were analyzed by SST using MODIS and Landsat thermal channel data. The difference of sea surface temperature between inland and offshore waters of Saemangeum embankment have changed by seasonal flow and residence time of sea water in dyke.

Modelling of evaporation from free water surface

  • Song, Wei-Kang;Chen, Yibo
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.237-245
    • /
    • 2020
  • The process of evaporation from free water surface was simulated in a large scale environmental chamber under various controlled atmospheric conditions and also was modelled by a new mass transfer model. Six evaporation tests were conducted with increasing wind speed and air temperature in the environmental chamber, and hence the effect of atmosphere parameters on the evaporation process and the corresponding response of water were investigated. Furthermore, based on the experiment results, seven general types of mass transfer models were evaluated firstly, and then a new model consisted of wind speed function and air relative humidity function was proposed and validated. The results show that the free water evaporation is mainly affected by the atmospheric parameters and the evaporation rate increases with the increasing air temperature and wind speed. Both the air and soil temperatures are affected by the energy transformation during water evaporation. The new model can satisfactorily describe the evaporation process from free water surface under different atmospheric conditions.

Numerical Analysis of Natural Convection from a Horizontal Surface Immersed in Cold Water (저온의 물속에 잠겨있는 수평 평면에 의하여 야기되는 자연대류의 수치해석)

  • 유갑종;예용택;권혁용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1195-1204
    • /
    • 1992
  • The natural convection from upward and downward facing horizontal isothermal plate immersed in water is studied numerically. The temperature of the plate is from 0.0 .deg. C to 8.0 .deg. C and the ambient water temperature is from 1.0 .deg. C to 10.0 .deg. C. Numerical results are presented for the velocity profiles, temperature profiles, local heat transfer coefficients, and average Nusselt numbers over the entire flow fields. Flow patterns are shown in the upward and downward facing surfaces at different ambient water temperatures. For the upward facing surface, there are upflow and unsteady flow. And the regions of the ambient water temperatures which give rise to the upflow are more extensive as the temperatures of the isothermal surface become more distant from the density extremum temperature. For the downward facing surface, only the downflow region is shown. For the upward facing horizontal isothermal surface, the average Nusselt number(= N $u_{1}$$^{*}$) is 28.86(Ra)$^{0.01}$. And for the downward facing surface, the average Nusselt number(= N $u_{2}$$^{*}$) is $C_{2}$(Ra)$^{0.2}$ and the values of $C_{2}$ are enlarged in the range of 0.785 .leq. $C_{2}$ .leq. 1.250 as increasing of the temperatures of the isothermal surface.ace.ace.

The Characteristics of Seasonal Variations of Water Quality in Mokpo Harbour 1. Physical Environment and Organic Pollution (목포항 수질의 계절적 변화 특성 I. 물리 환경과 유기 오염)

  • 김광수
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.2
    • /
    • pp.57-65
    • /
    • 1999
  • The in situ observations and the seawater analyses were conducted at all seasons from July 1996 to April 1999 for the purpose of describing the characteristics of seasonal variations of water quality in Mokpo harbour, Korea. Vertical stratification started to be formed in water column in spring, developed in summer and disappeared in fall. In summer, vertical density distribution of water column was found to be in stable structure with lower temperature and higher salinity of bottom water, and the vertical mixing of water between surface and bottom layers was restricted. In winter, however, surface water was found to be similar to bottom water in temperature and salinity, and water column was in unstable structure and in well-mixed condition between surface and bottom waters. The saturation percentage of dissolved oxygen(DO) in bottom water of inner part of Mokpo harbour at all seasons was shown to be decreased to the third grade or under the third grade of Korean standards of seawater quality. In particular, dissolved oxygen was oversaturated in surface water and undersaturated in bottom water in summer, due to stratification and organic pollution. The difference of DO concentration between surface and bottom waters was found to be greater in spring and summer than in fall and winter, due to stratification and photosynthesis of phytoplankton. The concentrations of chemical oxygen demand(COD) over the entire waters of Mokpo harbour were found to fluctuate from below the third grade to the first grade of Korean standards through all seasons and COD concentrations of same seasons were shown to be different year after year. In particular, in view of COD, the annual average seawater quality of Mokpo harbour was evaluated to be in third grade of Korean standards, due to organic pollution. The average COD of surface water was greater than that of bottom water in spring and summer, due to the autochthonous COD caused by production of phytoplankton in surface waters, while the average COD of surface water was similar to that of bottom water in fall and winter, due to the vertical mixing of water between surface and bottom layers.

  • PDF

Mitigating the Urban Heat Island Phenomenon Using a Water-Retentive Artificial Turf System

  • Tebakari, Taichi;Maruyama, Tatsuya;Inui, Masahiro
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.91-100
    • /
    • 2010
  • To investigate the thermal properties of a water-retentive artificial turf system (W-ATS), we estimated hydrologic parameters including thermal conductivity, heat capacity, and surface albedo for both the W-ATS and natural grass. We used a model experiment to measure surface temperature and evaporation for both the W-ATS and natural grass. We found that the W-ATS had lower thermal conductivity than natural grass did, and it was difficult for the W-ATS to convey radiant heat to the ground. Compared to natural grass, the W-ATS also had lower heat capacity, which contributed to its larger variation in surface temperature: the W-ATS had higher surface temperatures during daytime and lower surface temperatures during nighttime. The albedo of the W-ATS was one-quarter that of natural grass, and reflected shortwave radiation from the W-ATS surface was lower than that from the surface of natural grass. These results indicate that the W-ATS caused the soil temperature to increase. Furthermore, evaporation from the W-ATS was one-quarter the value of evapotranspiration from natural grass.

  • PDF

Evaluation of Thermal and Water Stress on Vegetation from Satellite Imagery

  • Viau, Alain A.;Jang, Jae-Dong;Anctil, Francois
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.165-167
    • /
    • 2003
  • To evaluate the thermal and water stress of vegetation canopy in Southern Qu$\'{e}$bec, leaf water status was evaluated from vegetation indices derived from SPOT VEGETATION images and surface temperature from NOAA AVHRR images. This study was conducted by investigating vegetation conditions for two different periods, from June to August, 1999 and 2000. The vegetation indices were integrated for the evaluating vegetation conditions as a new index, normalized moisture index (NMI). A trapezoid was defined by the NMI and surface temperature, and the thermal and water status of the vegetation canopy was determined according to separate small sections within the trapezoid.

  • PDF

An automated control system for concrete temperature development in construction

  • Qiang, Sheng;Leng, Xue-jun;Wang, Xiang-rong;Zhang, Jing-tao;Hua, Xia
    • Computers and Concrete
    • /
    • v.24 no.5
    • /
    • pp.437-444
    • /
    • 2019
  • PLC and its expansion module, electric ball valve and cooling pipe, electric heating steel plate and various components of the system, which is used to control test and process data. By automatically adjusting the opening of the valve, the system makes the top temperature and cooling speed develop along the ideal temperature diachronic curve. Moreover, the system enables the temperature difference between inside and surface of test block limited in a given range by automatically controlling the surface board heating. The method of physical simulation test by sandbox with built-in cooling water pipe and heating rod is adopted. On the premise of a given standard value, the operation of the system is checked under different working conditions. Further, an extension of this system is proposed, which enables its application to obtain some thermal parameters when cooperating with numerical simulation.

Numerical analysis of natural convection from a horizontal isothermal surface immersed in water near its density extremum (최대밀도점 부근의 물속에 잠겨있는 수평등온도면에 의하여 야기되는 자연대류의 수치해석)

  • 김병하;조승환;유갑종
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.197-206
    • /
    • 1990
  • Numerical results of heat transfer from a horizontal isothermal surface are presented for wall temperature T$_{w}$ = 0 .deg. C and ambient water temperature, T$_{\infty}$, from 1 .deg. C to 15 .deg. C. They include streamlines, temperature profiles, local heat transfer coefficients and average Nusselt numbers for the entire flow fields. For a upward-facing horizontal isothermal surface, the results show steady two dimensional flow regimes for T$_{\infty}$ .leg. 4.4 .deg. C, but no solution was obtained above T$_{\infty}$ = 4.4 .deg. C. For a downward-facing horizontal isothermal surface, the flow regimes are steady two dimensional flow for T$_{\infty}$ .geq. 4.9 .deg. C, and the numerical calculation was failed below this ambient water temperature. The mean Nusselt number has its maximum value at about T$_{\infty}$ = 3.4 .deg. C for upward-facing horizontal isothermal surface. For the case of downward-facing horizontal isothermal surface, the mean Nusselt number increases as the ambient water temperature increases.es.s.s.