• Title/Summary/Keyword: Surface Temperatures

Search Result 2,459, Processing Time 0.05 seconds

Effect of Temperature on the Deposition Rate and Bending Strength Characteristics of Chemical Vapor Deposited Silicon Carbide Using Methyltrichlorosilane (메틸트리클로로실란을 이용한 화학증착 탄화규소의 증착율 및 굽힘강도 특성에 미치는 온도의 영향)

  • Song, Jun-Baek;Im, Hangjoon;Kim, Young-Ju;Jung, Youn-Woong;Ryu, Hee-Beom;Lee, Ju-Ho
    • Composites Research
    • /
    • v.31 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • The effects of deposition temperature on chemical vapor deposited silicon carbide (CVD-SiC) were studied to obtain high deposition rates and excellent bending strength characteristics. Silicon carbide prepared at $1250{\sim}1400^{\circ}C$ using methyltrichlorosilane(MTS : $CH_3SiCl_3$) by hot-wall CVD showed deposition rates of $95.7{\sim}117.2{\mu}m/hr$. The rate-limiting reaction showed the surface reaction at less than $1300^{\circ}C$, and the mass transfer dominant region at higher temperature. The activation energies calculated by Arrhenius plot were 11.26 kcal/mole and 4.47 kcal/mole, respectively. The surface morphology by the deposition temperature changed from $1250^{\circ}C$ pebble to $1300^{\circ}C$ facet structure and multi-facet structure at above $1350^{\circ}C$. The cross sectional microstructures were columnar at below $1300^{\circ}C$ and isometric at above $1350^{\circ}C$. The crystal phases were all identified as ${\beta}$-SiC, but (220) peak was observed from $1300^{\circ}C$ or higher at $1250^{\circ}C$ (111) and completely changed to (220) at $1400^{\circ}C$. The bending strength showed the maximum value at $1350^{\circ}C$ as densification increased at high temperatures and the microstructure changed from columnar to isometric. On the other hand, at $1400^{\circ}C$, the increasing of grain size and the direction of crystal growth were completely changed from (111) to (220), which is the closest packing face, so the bending strength value seems to have decreased.

INFRARED THERMOGRAPHIC ANALYSIS OF TEMPERATURE RISE ON THE SURFACE OF BUCHANAN PLUGGER (적외선열화상장치를 이용한 Buchanan plugger 표면의 온도상승 분석)

  • Choi, Sung-A;Kim, Sun-Ho;Hwang, Yun-Chan;Youn, Chang;Oh, Byung-Ju;Choi, Bo-Young;Juhng, Woo-Nam;Jeong, Sun-Wa;Hwang, In-Nam;Oh, Won-Mann
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.4
    • /
    • pp.370-381
    • /
    • 2002
  • This study was performed to evaluate the temperature rise on various position of the Buchanan plugger, the peak temperature of plugger's type and the temperature change by its touching time of heat control spling. The heat carrier system 'System B' (Model 1005, Analytic Technologies, USA) and the Buchanan's plug-gers of F, FM, M and ML sizes are used for this study. The temperature was set to 20$0^{\circ}C$ which Dr. Buchanan's "continuous wave of condensation" technique recommended on digital display and the power level on it was set to 10. In order to apply heat on the Buchanan's pluggers, the heat control spring was touched for 1, 2, 3, 4 and 5 seconds respectively. The temperature rise on the surface of the pluggers were measured at 0.5 mm intervals from tip to 20 mm length of shank using the infrared thermography (Radiation Thermometer-IR Temper, NEC San-ei Instruments, Ltd, Japan) and TH31-702 Data capture software program (NEC San-ei Instruments, Ltd, Japan). Data were analyzed using a one way ANOVA followed by Duncan's multiple range test and linear regression test. The results as follows. 1. The position at which temperature peaked was approximately at 0.5 mm to 1.5 mm far from the tip of Buchanan's pluggers (p<0.001). The temperature was constantly decreased toward the shank from the tip of it (p<0.001). 2. When the pluggerss were heated over 5 seconds, the peak temperature by time of measurement revealed from 253.3$\pm$10.5$^{\circ}C$ to 192.1$\pm$3.3$^{\circ}C$ in a touch for 1 sec, from 218.6$\pm$5.$0^{\circ}C$ to 179.5$\pm$4.2$^{\circ}C$ in a touch for 2 sec, from 197.5$\pm$3.$0^{\circ}C$ to 167.5$\pm$3.7$^{\circ}C$ in a touch for 3 sec, from 183.7$\pm$2.5$^{\circ}C$ to 159.8$\pm$3.6$^{\circ}C$ in a touch for 4 sec and from 164.9$\pm$2.$0^{\circ}C$ to 158.4$\pm$1.8$^{\circ}C$ in a touch for 5 sec. A touch for 1 sec showed the highest peak temperature, followed by, in descending order, 2 sec, 3 sec, 4 sec. A touch for 5 sec showed the lowest peak temperature (p<0.001). 3. A each type of pluggers showed different peak temperatures. The peak temperature was the highest in F type and followed by, in descending order, M type, ML type. FM type revealed the lowest peak temperature (p<0.001). The results of this study indicated that pluggers are designed to concentrate heat at around its tip, its actual temperature does not correlate well with the temperature which Buchanan's "continuous wave of condensation" technique recommend, and finally a quick touch of heat control spring for 1sec reveals the highest temperature rise.

On the High Yield Pulping of Fir by Pressurized Refining (가압(加壓)리화이닝법(法)에 의한 젓나무의 고수율(高收率)펄프 제조(製造)에 관한 연구(研究))

  • Cho, Nam Seok;Jo, Byoung Muk
    • Journal of Korean Society of Forest Science
    • /
    • v.53 no.1
    • /
    • pp.44-55
    • /
    • 1981
  • Neutral sulfite precooked fir chips were refined in the Asplund Laboratory Defibrator at various temperature ($20^{\circ}C$, $120^{\circ}C$ and $180^{\circ}C$). The effects of refining temperatures on the physical property and morphological structure of the resulting pulps were discussed. Yields of precooked chips (84%, 92% and 100%) and refining temperature affected remarkably the yield of refined pulp, its beatability, sheet strength and morhphological characteristics. Pulp yield and beatability decreased with increasing refining temperature. Fiber surface of unbeaten pulp from precooked chips of 84% yield was to some extent covered by the secondary wall, while that of the pulp form precooked yield of 92% by the compound middle lamella. In the case of uncooked chips, fibers were damaged heavily, and the exposed fiber surface resulted from the equal amount of the secondary wall and the compound middle lamella. In the case of pulps prepared from precooked chips of higher yields (92% and 100%), sheet strength increased linearly as sheet density increased. But at the same sheet density, pulp from lower precooked yield (84%) had better sheet strength after open discharge refining as compared to pressurized refining, because pulp from the former had much amounts of fines fraction of higher water retention value than the latters. And there was observed a little difference in fiber length distribution but nearly similar in its morphology with increasing refining temperature.

  • PDF

Effects of Cutting Management during Summer Season on Growth and Reserve Carbohydrates of Orchardgrass (고온기 예취방법이 Orchardgrass의 생장 및 탄수화물 축적에 미치는 영향)

  • 김정철;최기춘;김광현;김우복
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.13 no.4
    • /
    • pp.257-267
    • /
    • 1993
  • Optimum pasture management during the summer season is an important factor to maintain good regrowth and persistence of pasture. The field experiment was carried out to investigate the effects of cutting management on growth and reserve carbohydrates in stubble. and on dry matter yield of orchardgrass dominated pasture during the mid-summer season. Three different cutting times(July 15, 25 and August 5) as a main plot and three cutting heights(3, 6 and 10cm) as a sub plot were disigned with three replications. The experiment was done at pasture of Changsung Agricultural High School in 1988. The results obtained were summarized as follows: 1. Temperature of soil surface and underground in the cutting of July 15 and July 25 was not showed significantly different, because of low intensity of radiation with a run of wet weather, and that of August 5 cutting tends to be lowed in high cutting height during the mid-summer season. 2. Amount of soil moisture against cutting height showed that high cutting had a low content. 3. Growth rate against regrowth of plant height, lear length and leaf area showed to be fast in high cutting. 4. Rapid recovery period of carbohydrate content after cutting and large amount of carbohydrate accumulation were showed in the cutting of July 15 and 25 compared with August 5 cutting in the reserve carbohydrate content against cutting of time and height during the mid-summer season. 5. Dry matter yield of the 4th and 5th cutting showed to be remarkable in July 15 cutting compared to those of July 25 and August 5. From the above results, it is suggested that the 10cm cutting height during the mid-summer season is the most effective for good regrowth, reserve carbohydrates and dry matter yield of orchardgrass.

  • PDF

Distribution of Dissolved and Particulate Organic Carbon in the East China Sea in Summer (하계 동중국해에서의 용존 및 입자유기탄소의 분포 특성)

  • Kim, Soo-Kang;Choi, Young-Chan;Kim, Jin-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.124-131
    • /
    • 2008
  • This study was conducted around the southwest sea areas of Jeju and coastal sea areas of China in August 2003 and September 2004 to research distribution patterns of dissolved inorganic nutrients, dissolved and particulate organic carbon. Distribution patterns of nutrients in the East China Sea in summer were shown to be influenced by water masses and phytoplankton. Water masses in the East China Sea in summer, except for coastal sea areas of china, showed less vertical mixing process, causing decline in the inflow of nutrients to surface water. Bottom water, however, showed high concentration, since nutrients made by dissolved organic matters from surface water were accumulated at the bottom. Sea areas with high concentration of chlorophyll a showed low concentration of nutrients and vice versa, indicating biological activities control dissolved inorganic nutrients. The distribution of dissolved organic carbon didn't show any correlation with salinity, temperatures, and water masses. Areas around the river mouth of the Changjiang showed high concentration of dissolved organic carbon more than $100{\mu}M$, but relatively low concentration in the southwest sea areas of Jeju, indicating that the river mouth of the Changjiang coastal water has a great influence on dissolved organic carbon in the East China Sea. Distribution patterns of particulate organic carbon in the research areas showed the highest concentration of average $9.23{\mu}M$ in coastal areas of China influenced by the river mouth of the Changjiang coastal water. By comparison, the concentration was relatively low at $3.04{\mu}M$ in the southeast sea areas of Jeju on which the Taiwan warm current has influence, and was $7.23{\mu}M$ in the central sea areas of Jeju. Thus, there is much indication that the river mouth of the Changjiang coastal water serves as a supplier of particulate organic carbon along with autogenous source. In general, if particulate organic carbon has a high correlation with the concentration of Chlorophyll a, it is thought that it is originated from autogenous source. However, the southeast sea areas of Jeju shows low salinity below 30, therefore it is proper to think that its origin is terrestrial source rather than that of autogenesis.

  • PDF

Effect of Growing Part Following Local Heating for Cherry Tomato on Temperature Distribution of Crop and Fuel Consumption (방울토마토 생장부 추종 국소난방이 군락 온도분포 및 연료소비에 미치는 영향)

  • Kwon, Jin Kyung;Kang, Geum Chun;Moon, Jong Pil;Lee, Tae Seok;Lee, Su Jang
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.217-225
    • /
    • 2015
  • Local heating system providing hot air locally to growing parts including shoot apex and flower cluster which were temperature-sensitive organs of cherry tomato was developed to reduce energy consumption for greenhouse heating without decline of crop growth. Growing part following local heating system was composed of double duct distributer which connected inner and outer ducts with hot air heater and winder which moved ducts up and down following growing parts with plant growth. Growing part local heating system was compared with conventional bottom duct heating system with respect to distributions of air and leaf surface temperatures according to height, growth characteristics and energy consumption. By growing part local heating, air temperature around growing part was maintained $0.9{\sim}2.0^{\circ}C$ higher than that of lower part of crop and leaf surface temperature was also stratified according to height. Investigations on crop growth characteristics and crop yield showed no statistically significant difference except for plant height between bottom duct heating and growing part local heating. As a result, the growing part local heating system consumed 23.7% less heating energy than the bottom duct heating system without decrease of crop yield.

The intrinsic instabilities of fluid flow occured in the melt of Czochralski crystal growth system

  • Yi, Kyung-Woo;Koichi Kakimoto;Minoru Eguchi;Taketoshi Hibiya
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.179-200
    • /
    • 1996
  • The intrinsic instabilities of fluid flow occurred in the melt of the Czochralski crystal growth system Czochralski method, asymmetric flow patterns and temperature profiles in the melt have been studied by many researchers. The idea that the non-symmetric structure of the growing equipment is responsible for the asymmetric profiles is usually accepted at the first time. However further researches revealed that some intrinsic instabilities not related to the non-symmetric equipment structure in the melt could also appear. Ristorcelli had pointed out that there are many possible causes of instabilities in the melt. The instabilities appears because of the coupling effects of fluid flow and temperature profiles in the melt. Among the instabilities, the B nard type instabilities with no or low crucible rotation rates are analyzed by the visualizing experiments using X-ray radiography and the 3-D numerical simulation in this study. The velocity profiles in the Silicon melt at different crucible rotation rates were measured using X-ray radiography method using tungsten tracers in the melt. The results showed that there exits two types of fluid flow mode. One is axisymmetric flow, the other is asymmetric flow. In the axisymmetric flow, the trajectory of the tracers show torus pattern. However, more exact measurement of the axisymmetrc case shows that this flow field has small non-axisymmetric components of the velocity. When fluid flow is asymmetric, the tracers show random motion from the fixed view point. On the other hand, when the observer rotates to the same velocity of the crucible, the trajectory of the tracer show a rotating motion, the center of the motion is not same the center of the melt. The temperature of a point in the melt were measured using thermocouples with different rotating rates. Measured temperatures oscillated. Such kind of oscillations are also measured by the other researchers. The behavior of temperature oscillations were quite different between at low rotations and at high rotations. Above experimental results means that the fluid flow and temperature profiles in the melt is not symmetric, and then the mode of the asymmetric is changed when rotation rates are changed. To compare with these experimental results, the fluid flow and temperature profiles at no rotation and 8 rpm of crucible rotation rates on the same size of crucible is calculated using a 3-dimensional numerical simulation. A finite different method is adopted for this simulation. 50×30×30 grids are used. The numerical simulation also showed that the velocity and flow profiles are changed when rotation rates change. Futhermore, the flow patterns and temperature profiles of both cases are not axisymmetric even though axisymmetric boundary conditions are used. Several cells appear at no rotation. The cells are formed by the unstable vertical temperature profiles (upper region is colder than lower part) beneath the free surface of the melt. When the temperature profile is combined with density difference (Rayleigh-B nard instability) or surface tension difference (Marangoni-B nard instability) on temperature, cell structures are naturally formed. Both sources of instabilities are coupled to the cell structures in the melt of the Czochralski process. With high rotation rates, the shape of the fluid field is changed to another type of asymmetric profile. Because of the velocity profile, isothermal lines on the plane vertical to the centerline change to elliptic. When the velocity profiles are plotted at the rotating view point, two vortices appear at the both sides of centerline. These vortices seem to be the main reason of the tracer behavior shown in the asymmetric velocity experiment. This profile is quite similar to the profiles created by the baroclinic instability on the rotating annulus. The temperature profiles obtained from the numerical calculations and Fourier transforms of it are quite similar to the results of the experiment. bove esults intend that at least two types of intrinsic instabilities can occur in the melt of Czochralski growing systems. Because the instabilities cause temperature fluctuations in the melt and near the crystal-melt interface, some defects may be generated by them. When the crucible size becomes large, the intensity of the instabilities should increase. Therefore, to produce large single crystals with good quality, the behavior of the intrinsic instabilities in the melt as well as the effects of the instabilities on the defects in the ingot should be studied. As one of the cause of the defects in the large diameter Silicon single crystal grown by the

  • PDF

Seasonal Occurrence and Developmental Characteristics of Ussur Brown Katydid, Paratlanticus ussuriensis Uvarov (Orthoptera: Tettigoniidae) (갈색여치의 발생소장 및 발육특성)

  • Moon, Sang-Rae;Noh, Doo-Jin;Yang, Jeong-Oh;Yoon, Chang-Mann;Ahn, Ki-Su;Kim, Gil-Hah
    • Korean journal of applied entomology
    • /
    • v.48 no.1
    • /
    • pp.11-19
    • /
    • 2009
  • This study was performed to investigate the seasonal occurrence, developmental characteristics of each nymphal stages with different temperatures (20, 25, $30^{\circ}C$), longevity and fecundity of ussur brown katydid, Paratlanticus ussuriensis, damaging by outbreaks in the orchard areas of Bitan-ri, Yeongdong, Chungbuk. Paratlanticus ussuriensis occurred from late-March to late-August with peak of mid-May. Newly emerged nymphs appeared from March and do damaged fruit orchards with peak of mid-May when P. ussuriensis existed as 4th and 5th nymphal stages. P. ussuriensis adult occurred from early-June to mid-Aug. with peak of mid-July. Total density of P. ussuriensis was showed highest in mid-May. Paratlanticus ussuriensis goes through nymphal stages to 7th nymph, the ovipositor began exposed to outside from the 4th instar and the body weight increased heavily from this stage and the wings were observed from 6th instar. Developmental period was longer as increased the nymphal stages. Sex ratio of collected insect was showed as 0.57; females more than males. As increased the temperature, developmental period was to be short. Preoviposition was also to be short as 5.0, 4.3, and 3.4 days at 20, 25, $30^{\circ}C$, respectively, and fecundity increased as 69.0, 87.1, and 104.3 at 20, 25, $30^{\circ}C$, respectively. Longevity of male and female at $25^{\circ}C$ was showed the longest with 35.7, and 32.9 days and showed the shortest with 30.1 and 28.1 days at $30^{\circ}C$, respectively. The difference of developmental period in male and female were showed longer in female without relation of temperature. The eggs laid were frequently distributed 3 to 4 cm from soil surface, and showed the behavior laying eggs intensively when early oviposition period.

Analysis of Unrest Signs of Activity at the Baegdusan Volcano (백두산 화산의 전조활동 분석 연구)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • The Baegdusan volcano is one of the most active volcanoes in northeastern Asia, and the 10th century eruption was the most voluminous eruption in the world in recent 2,000 years. During the period from 2002 to 2005, volcanic earthquakes and abnormal surface distortions by suspected subsurface magma intrusion beneath the volcano were observed in the Baegdusan area. Seismic activity has gradually increased with earthquake swarms during 2002-2003 and hundreds of seismic event in a day, especially annual peak of 2,100 in 2003. Then the number of seismic activity has declined since 2006 to the background level in 1999-2001. According to the typical frequency of volcanic earthquakes in the Baegdusan volcano, the frequency distribution of typical volcanic earthquakes between 2002 and 2005 indicates that all the main frequency of the earthquakes basically falls down less than 5 Hz and 5-10 Hz. These events are all the VT-B and LP events caused by the shallow localized fracture and intrusion of magma. The horizontal displacement measurement by GPS during the period from 2000 to 2007 of the Baegdusan stratovolcano area indicates that an inflated process has been centered at the summit caldera since 2002. The displacement between 2002 and 2003 reached at a maximum value of 4 cm. After 2003, the deformation rate of the volcano continued to decrease with unusual variation during the period from 2006 to 2007. After 2003 the vertical displacement uplift rate falls down gradually but still keeps in an uplift trend in northern slope. It is generally believed that when $^3He/^4He(R)$ in a gas sample from a hot spring exceeds $^3He/^4He(R)$ in the atmosphere, it can be concluded that mantle-source. And temperatures of hot springs are rising steadily to $83^{\circ}C$. It is unrest signals at the Baegdusan, which is potentially active. The Baegdusan volcano is now in unrest status, there is eruption threat in the near future. Intensified monitoring and emergency response plan for volcanic risk mitigation are urgent for the volcano.

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF