• Title/Summary/Keyword: Surface Shape

Search Result 5,044, Processing Time 0.035 seconds

Nose Shape Optimization of the High-speed Train to Reduce the Aerodynamic drag and Micro-pressure Wave (공기저항과 미기압파 저감을 위한 고속전철 전두부형상의 최적화설계)

  • Kwon, Hyeok-Bin;Kim, Yu-Shin;Lee, Dong-Ho;Kim, Moon-Sang
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.373-379
    • /
    • 2001
  • When a train runs into a tunnel at high-speed, aerodynamic drag suddenly increases and the booming noise is generated at the exit of tunnel. The noise shape is very important to reduce the aerodynamic drag in tunnel as well as on open ground, and the micro-pressure wave that is a source of booming noise is dependent on nose shape, especially on area distribution. In this study, the nose shape has been optimized employing the response surface methodology and the axi-symmetric compressible Navier-Stokes equations. The optimal designs have been executed imposing various conditions of the aerodynamic drag and the micro-pressure wave on object functions. The results show that the multi-objective design was successful to decrease micro-pressure wave and aerodynamic drag of trains.

  • PDF

Modeling of the triangle optimum shape in the surface of an Aluminum dome structure (알루미늄 돔 구조물에서 표면의 삼각형 최적 형상 모델링)

  • 이성철;조종두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.647-650
    • /
    • 1997
  • A complete dome structure is based on a basic dome modeling, and the basic dome modeling affects safety of the dome structure. In other to save the manufacture expenses, an optimum shape modeling of a dome structure is necessary work of before manufacture of the dome. In this study, modeling of the triangle optimum shape in the surface of an aluminum dome is more focused to optimize shape of the dome and save manufacture expenses. After being made the systematic procedure of the basic modeling, the programming work of the procedure is performed. The program is made by C language, and the trust of the program is proved by comparison between output data of the program and basic modeling in PATRAN.

  • PDF

Optimal shape design of contact systems

  • Mahmoud, F.F.;El-Shafei, A.G.;Al-Saeed, M.M.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.2
    • /
    • pp.155-180
    • /
    • 2006
  • Many applications in mechanical design involve elastic bodies coming into contact under the action of the applied load. The distribution of the contact pressure throughout the contact interface plays an important role in the performance of the contact system. In many applications, it is desirable to minimize the maximum contact pressure or to have an approximately uniform contact pressure distribution. Such requirements can be attained through a proper design of the initial surfaces of the contacting bodies. This problem involves a combination of two disciplines, contact mechanics and shape optimization. Therefore, the objective of the present paper is to develop an integrated procedure capable of evaluating the optimal shape of contacting bodies. The adaptive incremental convex programming method is adopted to solve the contact problem, while the augmented Lagrange multiplier method is used to control the shape optimization procedure. Further, to accommodate the manufacturing requirements, surface parameterization is considered. The proposed procedure is applied to a couple of problems, with different geometry and boundary conditions, to demonstrate the efficiency and versatility of the proposed procedure.

Development of a Shape Inspection System of the Light Guide Panel

  • Youn, Sang-Pil;Lee, Young-Chon;Ryu, Young-Kee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.53.3-53
    • /
    • 2001
  • This paper deals with the development of a shape inspection system of the Light Guide Panel(LGP), and the study for the performance of the system. The conventional contact sensing methods have been used to inspect the shape. However the contact-sensing methods have some problems. The contact between a tip of the sensor and the surface of objects make a sensor tip abraded and generate a defect on the surface of objects. In this paper, we employed the Non-Contact Optical Sensor[1] to measure the shape inspection system of LGPs, The Sensor composed of Hologram laser[3] unit used for CD Optical Pickup[2] is low cost and has a good performance to measure a transparent objects. From the results of experiments for LGP shape inspection ...

  • PDF

Development of Framework of Linkage between Geometric Modeling and Finite Element Analysis for Shape Optimization of Shell Surfaces (쉘 곡면 형상의 최적 설계를 위한 유한요소해석과 기하학적 모델링의 연동)

  • Kim,Hyeon-Cheol;No,Hui-Yeol;Jo,Maeng-Hyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.27-35
    • /
    • 2003
  • Geometric modeling tool and analysis tool of shell surface have been developed in the different environments and purposes. Thus they cannot be naturally fitted to each other for the integrated design and analysis. In the present study, an integrated framework of geometric modeling, analysis, and design optimization is proposed. It is based on the common representation of B-spline surface patch. In the analysis module, a geometrically-exact shell finite element is implemented. In shape optimization module, control points of the surface are selected as design variables. For the computation of shape sensitivities, semi-analytical method is used. Sequential linear programming(SLP) is adopted for the shape optimization of surfaces. The developed integrated framework should serve as a powerful tool for the geometric modeling, analysis, and shape design of surfaces.

Fabrication of shape-controlled Au nanoparticle arrays for SERS substrates

  • Shin, Seon Mi;Choi, Kyeong Woo;Ye, Seong Ji;Kim, Young Yun;Park, O Ok
    • Advances in materials Research
    • /
    • v.3 no.3
    • /
    • pp.139-149
    • /
    • 2014
  • Surface enhanced Raman Scattering (SERS) has attracted attention because the technique enables detection of various chemicals, even down to single molecular scale. Among the diverse candidates for SERS substrates, Au nanoparticles are considered promising due to their fine optical properties, chemical stability and ease of surface modification. Therefore, the fabrication and optical characterization of gold particles on solid supports is highly desirable. Such structures have potential as SERS substrates because the localized surface plasmon resonance of gold nanoparticles is very sensitive to combined molecules and environments. In addition, it is well-known that the properties of Au nanoparticles are strongly dependent on their shape. In this work, arrays of shape-controlled Au nanoparticles were fabricated to exploit their enhanced and reproducible optical properties. First, shape-controlled Au nanoparticles were prepared via seed mediated solution-phase synthesis, including spheres, octahedra, and rhombic dodecahedra. Then, these shape-controlled Au nanoparticles were arranged on a PDMS substrate, which was nanopatterned using soft lithography of poly styrene particles. The Au nanoparticles were selectively located in a pattern of hexagonal spheres. In addition, the shape-controlled Au nanoparticles were arranged in various sizes of PDMS nanopatterns, which can be easily controlled by manipulating the size of polystyrene particles. Finally, the optical properties of the fabricated Au nanoparticle arrays were characterized by measuring surface enhanced Raman spectra with 4-nitrobenezenethiol.

TRANSIENT FLOW SIMULATION OF A MIXER WITH FREE SURFACE (자유표면을 고려한 교반기 내부의 비정상 유동해석)

  • Ahn, Ick-Jin;Song, Ae-Kyung;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.9-13
    • /
    • 2006
  • In the present study, a numerical analysis of transient mixer flow is performed considering free surface formation. The flow patterns and free surface shape in a mixers formed by flat paddle and pitched paddle impellers are predicted. In a flat paddle mixer, two flow circulation regions are formed due to strong radial flow, whereas one large circulation is formed in a pitched paddle mixer due to axial downward flow. These differences affect the free surface evolution and shape. It is seen from the results that a flat paddle mixer gives deeper free surface at center region than a pitched paddle mixer. The free surface of 8-blades-flat-paddle mixer is also simulated to compare with the available experimental and simulation results. The present computational results agree reasonably well with the experimental data.

Water droplet behavior on a solid-infused surface cured with commercial Gentoo polymer (상용 Gentoo 폴리머가 경화된 고체주입표면에서 물방울 거동)

  • Hyeongwon Kim;Jeong-Hyun Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.61-67
    • /
    • 2024
  • In this study, the behavior of water droplets on a solid-infused surface was evaluated by quantifying a water droplet's contact angle, sliding angle, and terminal velocity. The contact angle hysteresis and sliding angle of water on the solid-infused surface were measured to be lower than those of the hydrophobic PTFE surface. It led to the enhancement of the initiation of the water droplet's movement. When the capillary number was lower than Ca < 0.004, the terminal velocity of the water droplet on the solid-infused surface was higher than the PTFE surface due to the low contact line resistance. However, the transition of the droplet morphology from a hemispherical shape to a streamlined teardrop shape beyond Ca > 0.004 lost the effect of reducing frictional resistance on the solid-infused surface.

Surface roughness crushing effect on shear behavior using PFC (PFC를 이용한 평면 파쇄가 전단 거동에 미치는 효과)

  • Kim, Eun-Kyung;Jeong, Da-Woon;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.321-336
    • /
    • 2012
  • The shear behavior at the particle/surface interface such as rock joint can determine the mechanical behavior of whole structure. Therefore, a fundamental understanding of the mechanisms governing its behavior and accurately estimation of the interface strength is essential. In this paper, PFC, a numerical analysis program of discrete element method was used to investigate the effects of the surface roughness crushing on interface strength. The surface roughness was characterized by smooth, intermediate, and rough surface, respectively. Particle shape was classified into one ball model of circular shape and 3 ball model of triangular shape. The surface shape was modelled by wall model of non-crushing surface and ball model of crushing surface. The results showed that as the bonding strength of ball model decreases, lower interface strength is induced. After the surface roughness crushing was occurred, the interface strength tended to converge and higher bonding strength induced lower surface roughness crushing. Higher friction angle was induced in wall model and higher surface roughness induced the higher friction angle. From these findings, it is verified that the surface roughness and surface roughness crushing effect on the particle/surface interface shear behavior.

Tendency Analysis of Shape Error According to Forming Parameter in Flexible Stretch Forming Process Using Finite Element Method (유한요소법을 이용한 가변스트레치공정 성형변수에 따른 성형오차 경향분석)

  • Seo, Y.H.;Heo, S.C.;Song, W.J.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.486-493
    • /
    • 2010
  • A shape error of the sheet metal product made by a flexible stretch forming process is occurred by a various forming parameters. A die used in the flexible stretch forming is composed of a punch array to obtain the various objective surfaces using only one die. But gaps between the punches induce the shape error and the defect such as a scratch. Forming parameters of the punch size and the elastic pad to prevent the surface defect must be considered in the flexible die design process. In this study, tendency analysis of shape error according to the forming parameters in the flexible stretch process is conducted using a finite element method. Three forming parameters, which are the punch size, the objective curvature radius and the elastic pad thickness, are considered. Finite element modeling using the punch height calculation algorithm and the evaluation method of the shape error, which is a representative value for the formability of formed surface, are proposed. Consequently, the shape error is in proportion to the punch size and is out of proportion to the objective curvature radius and the elastic pad thickness.