• Title/Summary/Keyword: Surface Seawater

Search Result 546, Processing Time 0.025 seconds

Growth and morphological characteristics of Polygonatum species indigenous to Korea (한국산 둥굴레속(Polygonatum) 수집종의 생육 및 형태적 특성)

  • Yun, Jong-Sun;Son, Suk-Yeong;Hong, Eui-Yon;Kim, Ik-Hwan;Yun, Tae;Lee, Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.15 no.2
    • /
    • pp.164-171
    • /
    • 2002
  • Morphological characteristics and growth pattern of 10 Polygonatum collections indigenous to Korea were examined to select the promising medicinal, edible resources and horticultural crops. Plant heights of I0 collections ranged from 15 to 102cm. Stem type was ascending or erect, and node numbers per a stem was 6.2 to 23.2. Phyllotaxis type was alternate or verticillate, and leaf shape was elliptical or linear. Leave numbers per a stem was 5.2 to 63.4, and bract types were classified into bracteate and nonbracteate. Flowers bloomed from May 7 to May 30, and flowering period was 5 to 13 days. Inflorescence types were classified into racemose, corymbose, and umbellate. Flower numbers per a stem was 1.5 to 125.2, and flower length was 13.1 to 30.2㎜. Perianth shapes were classified into tubular, constrict and urceolate. Surface colors of rhizome were pale yellow, pale brown, brown, and dark brown. As a result of this experiment, P. sibiricum, P. odoratum var. pluriflorum and P. odoratum var. thunbergii were thought to be useful as the medicinal and edible resources plants. On the other hand, P. odoratum var. pluriflorum 'Variegata', and P. odoratum var. maximowiczii, P. lasianthum. P. involucratum, P. desoulavyi, P. humile, and P. inflatum were thought to be useful as horticultural plants.

Specific Absorption Coefficients for the Chlorophyll and Suspended Sediment in the Yellow and Mediterranean Sea (황해와 지중해에서의 클로로필 및 부유입자의 비흡광계수 연구)

  • 안유환;문정언
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.353-365
    • /
    • 1998
  • Light absorption coefficient per unit mass of particles, i.e., specific absorption coefficient, is important as one of the main parameters in developing algorithms for ocean color remote sensing. Specific absorption coefficient of chlorophyll ($a^*_{ph}$) and suspended sediment ($a^*_{ss}$) were analyzed with a spectrophotometer using the "wet filter technique" and "Kishino method" for the seawater collected in the Yellow and Mediterranean Sea. An improved data-recovery method for the filter technique was also developed using spectrum slopes. This method recovered the baselines of spectrum that were often altered in the original methods. High $a^*_{ph}({lambda})$ values in the oligotrophic Mediterranean Sea and low values in the Yellow Sea were observed, ranging 0.01 to 0.12 $m^2$/mg at the chlorophyll maximum absorption wavelength of 440 nm. The empirical relationship between $a^*_{ph}$(440nm) and chlorophyll concentrations () was found to fit a power function ($a^*_{ph}$=0.039 $^{-0.369}$), which was similar to Bricaud et al. (1995). Absorption specific coefficients for suspended sediment ($a^*_{ss}$) did not show any relationship with concentrations of suspended sediment. However, an average value of $a^*_{ss}$ ranging 0.005 - 0.08 $m^2$/g at 440nm, was comparable to the specific absorption coefficient of soil (loess) measured by Ahn (1990). The morepronounced variability of $a^*_{ss}$ than $a^*_{ph}$ was determined from the variable mixing ratio values between particulate organic matter and mineral. It can also be explained by a wide size-distribution range for SS which were determined by their specific gravity, bottom state, depth and agitation of water mass by wind in the sea surface.

A Study of Habitat Environment Mapping Using Detailed Bathymetry and Seafloor Data in the Southern Shore of the East Sea(Ilsan Beach, Ulsan) (정밀 해저지형 및 해저면 자료를 활용한 동해 남부 연안(울산 일산해변) 생태계 서식지 환경 맵핑 연구)

  • Choi, SoonYoung;Kim, ChangHwan;Kim, WonHyuck;Rho, HyunSoo;Park, ChanHong
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.717-731
    • /
    • 2021
  • We analyzed the characteristics of the habitat environment for the Seonam study area in Ulsan, the southern shore of the East Sea using bathymetry and seafloor environment data. The depth of the study area ranges from about 0 m to 23 m. In the west of the study area, the water depth is shallow with a gentle slope, and the water depth becomes deeper with a steep slope in the east. Due to the right-lateral strike-slip faults located in the continental margin of the East Sea, the fracture surfaces of the seabed rocks are mainly in the N-S direction, which is similar to the direction of the strike faults. Three seafloor types (conglomeratic-grained sandy, coasre-graiend sandy, fine-grained sandy) and rocky bottom area have been classified according to the analyses of the bathymerty, seafloor image, and surface sediment data. The rocky bottom areas are mainly distributed around Seaoam and in the northern and southern coastal area. But the intermediate zone between Seonam and coastal area has no rocky bottom. This intermediate area is expected to have active sedimentation as seawater way. The sandy sediments are widely distributed throughout the study area. Underwater images and UAV images show that Cnidarians, Brachiopods, Mollusks are mostly dominant in the shallow habitat and various Nacellidae, Mytilidae live on the intertidal zone around Seonam. Annelida and Arthropod are dominant in the sandy sediments. The distribution of marine organism in the study area might be greatly influenced by the seafloor type, the composition and particle size distribution of the seafloor sediments. The analysis of habitat environment mapping with bathymetry, seafloor data and underwater images is supposed to contribute to the study of the structure and function of marine ecosystem.

Derivation of Inherent Optical Properties Based on Deep Neural Network (심층신경망 기반의 해수 고유광특성 도출)

  • Hyeong-Tak Lee;Hey-Min Choi;Min-Kyu Kim;Suk Yoon;Kwang-Seok Kim;Jeong-Eon Moon;Hee-Jeong Han;Young-Je Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.695-713
    • /
    • 2023
  • In coastal waters, phytoplankton,suspended particulate matter, and dissolved organic matter intricately and nonlinearly alter the reflectivity of seawater. Neural network technology, which has been rapidly advancing recently, offers the advantage of effectively representing complex nonlinear relationships. In previous studies, a three-stage neural network was constructed to extract the inherent optical properties of each component. However, this study proposes an algorithm that directly employs a deep neural network. The dataset used in this study consists of synthetic data provided by the International Ocean Color Coordination Group, with the input data comprising above-surface remote-sensing reflectance at nine different wavelengths. We derived inherent optical properties using this dataset based on a deep neural network. To evaluate performance, we compared it with a quasi-analytical algorithm and analyzed the impact of log transformation on the performance of the deep neural network algorithm in relation to data distribution. As a result, we found that the deep neural network algorithm accurately estimated the inherent optical properties except for the absorption coefficient of suspended particulate matter (R2 greater than or equal to 0.9) and successfully separated the sum of the absorption coefficient of suspended particulate matter and dissolved organic matter into the absorption coefficient of suspended particulate matter and dissolved organic matter, respectively. We also observed that the algorithm, when directly applied without log transformation of the data, showed little difference in performance. To effectively apply the findings of this study to ocean color data processing, further research is needed to perform learning using field data and additional datasets from various marine regions, compare and analyze empirical and semi-analytical methods, and appropriately assess the strengths and weaknesses of each algorithm.

High-Resolution Paleoproductivity Change in the Central Region of the Bering Sea Since the Last Glaciation (베링해 중부 지역의 마지막 빙하기 이후 고생산성의 고해상 변화)

  • Kim, Sung-Han;Khim, Boo-Keun;Shin, Hye-Sun;Uchida, Masao;Itaki, Takuya;Ohkushi, Kenichi
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.3
    • /
    • pp.134-144
    • /
    • 2009
  • Paleoproductivity changes in the central part of the Bering Sea since the last glacial period were reconstructed by analyzing opal and total organic carbon (TOC) content and their mass accumulation rate (MAR) in sediment core PC23A. Ages of the sediment were determined by both AMS $^{14}C$ dates using planktonic foraminifera and Last Appearance Datum of radiolaria (L. nipponica sakaii). The core-bottom age was calculated to reach back to 61,000 yr BP. and some of core-top was missing. Opal and TOC contents during the last glacial period varied in a range of 1-10% and 0.2-1.0%, and their average values are 5% and 0.7%, respectively. In contrast, during the last deglaciation, opal and TOC contents varied from 5 to 22% and from 0.8 to 1.2%, respectively, with increasing average values of 8% and 1.0%. Opal and TOC MAR were low ($1gcm^{-2}kyr^{-1}$, $0.2gcm^{-2}kyr^{-1}$) during the last glacial period, but they increased (>5 and >$1gcm^{-2}kyr^{-1}$) during the last deglaciation. High diatom productivity during the last deglaciation was most likely attributed to the elevated nutrient supply to the sea surface resulting from increased melt water input from the nearby land and enhanced Alaskan Stream injection from the south under the restricted sea-ice and warm condition during the rising sea level. On the contrary, low productivity during the last glacial period was mainly due to decreased Alaskan Stream injection during the low sea-level condition as well as to extensive development of sea ice under low-temperature seawater and cold environment.

Spatio-temporal Changes in Macrobenthic Community Structure and Benthic Environment at an Intensive Oyster Culturing Ground in Geoje-Hansan Bay, Korea (굴 양식장 밀집해역인 거제한산만의 저서동물군집 구조와 저서환경의 시.공간적 변동)

  • Yoon, Sang-Pil;Jung, Rae-Hong;Kim, Youn-Jung;Hong, Sok-Jin;Oh, Hyun-Taik;Lee, Won-Chan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.4
    • /
    • pp.213-228
    • /
    • 2009
  • This study was conducted to investigate spatio-temporal changes in macrobenthic community structure and benthic environmental conditions in Geoje-Hansa Bay, which is the greatest oyster producing site in Korea. Field survey for benthic environment and macrobenthos was seasonally carried out at 15 stations covering oyster farming sites and non-farming sites from February to November, 2008. The grain size of surface sediments was dominated by very fine silt with the mean phi of about $9\;{\Phi}$ and TOC was 1.9% on average. Mean dissolved oxygen content was 8.1 mg/L and lowest in August corresponding to the 2nd degree in seawater quality criteria. Total species number was 351 and mean density was $3,675\;ind./m^2$, both of which were dominated by polychaete worms. Spatio-temporal variation in above two biological variables was great with higher values seasonally in spring and spatially in channels rather than inner bay. Dominant species were Lumbrineris longifolia (21.3%), Aphelochaeta monilaris (17.8%) and Ericthonius pugnax(6.1%), all of which are typical species of organically enriched area. From the multivariate analyses, the whole macrobenthic community was distinguished into two groups of channel and inner bay group. Spatio-temporal changes of macrobenthic community in Geoje-Hansan Bay were related to those of TOC and acid volatile sulfide (AVS). Our results showed that Geoje-Hansan Bay should be intermediately affected by organic pollution, and that such organic enrichment was more remarkable at farming stations in the inner bay.