• Title/Summary/Keyword: Surface Roughness reduction

Search Result 224, Processing Time 0.028 seconds

Optimization of Incremental Sheet Forming Al5052 Using Response Surface Method (반응표면법을 이용한 Al5052 판재의 점진성형 최적화 연구)

  • Oh, S.H.;Xiao, X.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.30 no.1
    • /
    • pp.27-34
    • /
    • 2021
  • In this study, response surface method (RSM) was used in modeling and multi-objective optimization of the parameters of AA5052-H32 in incremental sheet forming (ISF). The goals of optimization were the maximum forming angle, minimum thickness reduction, and minimum surface roughness, with varying values in response to changes in production process parameters, such as tool diameter, tool spindle speed, step depth, and tool feed rate. A Box-Behnken experimental design (BBD) was used to develop an RSM model for modeling the variations in the forming angle, thickness reduction, and surface roughness in response to variations in process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective optimization of the ISF process based on experimental design. The results showed that RSM can be effectively used to control the forming angle, thickness reduction, and surface roughness.

An effect of load on surface roughness in surface rolling (표면 로울링시 가압력이 표면 조도에 미치는 영향)

  • 강명순;김희남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.935-944
    • /
    • 1987
  • The surface rolling, one of the plastic working processes, provides good surface roughness with the reduction of diameter and the increase of surface hardness. In this study three Nachi 6000ZZ bearing were used for surface rolling on ductile cast iron. The results obtained are as follows; (1) The good surface roughness can be obtained with roller surface radius of curvature of 24mm after the 2nd rolling. (2) The surface roughness of ductile cast iron was 0.48.mu.mRmax by the contact pressure of 140kgf/mm$^{2}$ and surface hardness was Hv 395 with roller surface radius of curvature of 24mm after the 2nd rolling. (3) The reduction of specimen diameter of ductile cast iron were -12.8.mu.m due to rolling. (4) Within the diameter variation of -11.mu.m, surface roughness and surface hardness were increased, but at the range of exceeding -14.mu.m of the diameter variation the surface roughness became worse and the surface roughness became worse and the surface hardness was increased. (5) Dynamic contact area was about 25% to 30% of static contact area. The calculated contact pressure showed a good agreement with the experimental contact pressure.

Relation between applied forces and surface characteristics on surface rolling in cast iron (주철의 표면로울링에서 가압력의 영향)

  • 육굉수;박병성;최재승
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.705-711
    • /
    • 1988
  • Surface rolling is one of the plastic deformation processes, which improves surface roughness and increases hardness. The surface rolling tool used in this experiment was specially designed by author for surface rolling on cast iron. The cutting feeds were 0.10mm/rev.and 0.30mm/rev.The applied forces of rolling were in the range of 10kgf to 30kgf with 5kgf differences. The results obtained are as follows. (1) In general the good surface roughness can be obtained with the applied force 25kgf according to surface roughness of the previous turning. (2) The hardness is mainly increased at the first rolling process and is more increased with the increasing applied forces. (3) The reduction of the diameter heavily depends on the original surface roughness. That is, the larger surface roughness is, the larger is the reduction is the reduction of diameter.

Roughness and micro pit defects on surface of SUS 430 stainless steel strip in cold rolling process

  • Li, Changsheng;Zhu, Tao;Fu, Bo;Li, Youyuan
    • Advances in materials Research
    • /
    • v.4 no.4
    • /
    • pp.215-226
    • /
    • 2015
  • Experiment on roughness and micro pit defects of SUS 430 ferrite stainless steel was investigated in laboratory. The relation between roughness and glossiness with reduction in height, roll surface roughness, emulsion parameters was analyzed. The surface morphology of micro pit defects was observed by SEM, and the effects of micro pit defects on rolling reduction, roll surface roughness, emulsion parameters, lubrication oil in deformation zone and work roll diameter were discussed. With the increasing of reduction ratio strip surface roughness Ra(s), Rp(s) and Rv(s) were decreasing along rolling and width direction, the drop value in rolling direction was faster than that in width direction. The roughness and glossiness were obtained under emulsion concentration 3% and 6%, temperature $55^{\circ}C$ and $63^{\circ}C$, roll surface roughness $Ra(r)=0.5{\mu}m$, $Ra(r)=0.7{\mu}m$ and $Ra(r)=1.0{\mu}m$. The glossiness was declined rapidly when the micro defects ratio was above 23%. With the pass number increasing, the micro pit defects were reduced, uneven peak was decreased and gently along rolling direction. The micro pit defects were increased with the roll surface roughness increase. The defects ratio was declined with larger gradient at pass number 1 to 3, but gentle slope at pass number 4 to 5. When work roll diameter was small, bite angle was increasing, lubrication oil in micro pit of deformation zone was decreased, micro defects were decreased, and glossiness value on the surface of strip was increased.

Mechanism of Drag Reduction by Dimples and Roughness on a Sphere (구에 설치한 딤플과 표면 거칠기에 의한 항력 감소 메커니즘)

  • Choi, Jin;Jeon, Woo-Pyung;Choi, Hae-Cheon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.191-194
    • /
    • 2006
  • In this paper, we present a detailed mechanism of drag reduction by dimples and roughness on a sphere by measuring the streamwise velocity above the dimpled and roughened surfaces, respectively. Dimples cause local flow separation and trigger the shear layer instability along the separating shear layer, resulting in generation of large turbulence intensity. With this increased turbulence, the flow reattaches to the sphere surface with high momentum near the wall and overcomes strong adverse pressure gradient formed in the rear sphere surface. As a result, dimples delay main separation and reduce drag significantly. The present study suggests that generation of a separation bubble, i.e. a closed-loop streamline consisting of separation and reattachment, on a body surface is an important flow-control strategy for drag reduction on a bluff body such as the sphere and cylinder. In the case of roughened sphere, the boundary layer flow is directly triggered by roughness and changes to a turbulent flow. Due to this change, the drag significantly decreases. As the Reynolds number further increases, transition to turbulence occurs earlier on the sphere surface. Because of faster growth of turbulent boundary layer by roughness, earlier transition thickens the boundary layer, resulting in earlier separation and drag increase with increasing Reynolds number

  • PDF

Effect of N2/Ar flow rates on Si wafer surface roughness during high speed chemical dry thinning

  • Heo, W.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.128-128
    • /
    • 2010
  • In this study, we investigated the evolution and reduction of the surface roughness during the high-speed chemical dry thinning process of Si wafers. The direct injection of NO gas into the reactor during the supply of F radicals from NF3 remote plasmas was very effective in increasing the Si thinning rate, due to the NO-induced enhancement of the surface reaction, but resulted in the significant roughening of the thinned Si surface. However, the direct addition of Ar and N2 gas, together with NO gas, decreased the root mean square (RMS) surface roughness of the thinned Si wafer significantly. The process regime for the increasing of the thinning rate and concomitant reduction of the surface roughness was extended at higher Ar gas flow rates. In this way, Si wafer thinning rate as high as $20\;{\mu}m/min$ and very smooth surface roughness was obtained and the mechanical damage of silicon wafer was effectively removed. We also measured die fracture strength of thinned Si wafer in order to understand the effect of chemical dry thinning on removal of mechanical damage generated during mechanical grinding. The die fracture strength of the thinned Si wafers was measured using 3-point bending test and compared. The results indicated that chemical dry thinning with reduced surface roughness and removal of mechanical damage increased the die fracture strength of the thinned Si wafer.

  • PDF

Effects of Rolling Numbers and Feeds on Surface Deformation in Surface Rolling of Cast Iron (주철의 표면로울링에서 이송량과 로울링 회수에 따른 변화 연구)

  • Yuck, Kweng-Su;Lee, Yong-Chul;Kwak, Soo-Heon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.3
    • /
    • pp.68-77
    • /
    • 1989
  • The surface rolling for cylindrical surface of a grey cast iron was carried out using a lathe with a simple newly-designed tool system. A surface rolling tool used was steel ball whose diameter was 3/8 inch (9.525mm) The effects of rolling feeds and number of rolling on surface rolling were investigated. The contact pressure between ball and workpiece which was considered as Hertz's contact problem was examined and the track of motion of a ball on the cylindrical surface of a work- piece was measured according to the rolling feed. The results obtained were as follows; 1. The roughness of the machined surface which was originally 5.3 .approx. 28 umRz decreased to 1.2 .approx. 5 umRz according to rolling feeds and numbers of rolling. 2. The hardness increased from Hv 260 to Hv 290 .approx. 310 through 2 .approx. 4 rollings according to the roughness of machined surfaces. 3. The reduction of diameter was found to be proportional to the variations of roughness of previous machined surfaces. About 60% to 90% of reduction in diameter was made during the first rolling process. 4. An equation relating the reduction of diameter and the variation of surface roughness after surface rolling was presented using a geometric surface model. 5. An equation for the calculation of dynamic contact area between pressure ball and workpiece according to the rolling feed was presented.

  • PDF

An effect of load on surface roughness in surface rolling (표면 Rolling시 가압력이 표면 조도에 미치는 영향)

  • 강명순
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.57-65
    • /
    • 1987
  • The surface rolling method which is one of the plastic deformation processes increases the surface roughness with reduction of diameter and hardness. In this study, three NACHI 6000 ZZ bearing were used for surface rolling tool on a mild steel The following results have been obtained with the mild steel. 1) The load is major factor in getting fine surface roughness of roller finishing after grinding The optimal surface roughness of SS41 steel can be obtained at the contact pressure of 210 kgf/cm$^{2}$. 2) At the contact pressure range of 200kgf/cm$^{2}$-210kgf/cm$^{2}$ for optimal surface roughness, The surface hardness increased to Hv200-Hv240 from Hv 125 before surface rolling. 3) Within the diameter variation of 13 .mu.m the surface roughness and the surface hardness were increased, but out of variation of 14.mu.m. The surface roughness become worse and the surface hardness was increased.

  • PDF

A Study on Work Roll Wear and Surface Roughness of Steel Strip in the Cold Rolling (냉간압연가공시 Work roll 마멸과 판면조도에 관한 연구)

  • Jeon, Eon-Chan;Kim, Sun-Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.4
    • /
    • pp.33-40
    • /
    • 1991
  • The decrease in surface roughness of work roll and steel strip in cold rolling of low carbon steel strip has been investigated by working distance, materials, total separating force and total reduction ratio. The main results are as follows; For the same lubricating conditions. 1) The changing of surface roughness of steel strip were similar to work roll. The transcription ratio is in inverse proportion to the carbon content of steel strip. 2) The surface roughness of steel strip is hardly change according to changing of total separating force and total reduction ration. 3) The wear of work rolls surface is more rapid in that case of continuous casted steel strip than ingot casted steel strip. The aluminium content dull powder adhere on the rolls surface, and so. It makes the mirror surface of work roll accelerate.

  • PDF

The effect of ball diameter upon surface accuracy in surface rolling with cast iron (주철의 서어피스 로울링에 있어서 가압 볼의 직경이 표면정밀도에 미치는 영향)

  • 허명규;최홍식;육광수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1071-1082
    • /
    • 1988
  • Surface rolling is one of the micro plastic processes which yields local deformation of surface, and improves surface roughness, hardness and fatigue strength. With the use of gray cast iron (GC 30) as material for experiment, the changes in surface roughness were investigated. A number of previous theses were refered to the effects of surface rolling for this study. With the use of steel ball of excellent in surface roughness and hardness, and with the applied force 20Kgf, surface rolling was performed. The summary of the experiment is as follows: (1) With the fixed applied force 20Kgf and the ball of 8.726mm in diameter, surface roughness was found to be the most excellent. (2) Increase in hardness was most prominent in the first rolling, but less effective in the succeeding rolling. (3) Reduction on diameter was affected by the previous process before rolling, and about 70 to 90% of reduction was made in the first rolling.