• Title/Summary/Keyword: Surface Properties Test

Search Result 1,822, Processing Time 0.03 seconds

Dynamic mechanism of rock mass sliding and identification of key blocks in multi-fracture rock mass

  • Jinhai Zhao;Qi Liu;Changbao Jiang;Zhang Shupeng;Zhu Weilong;Ma Hailong
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.375-385
    • /
    • 2023
  • There are many joint fissures distributed in the engineering rock mass. In the process of geological history, the underground rock mass undergoes strong geological processes, and undergoes complex geological processes such as fracture breeding, expansion, recementation, and re-expansion. In this paper, the damage-stick-slip process (DSSP), an analysis model used for rock mass failure slip, was established to examine the master control and time-dependent mechanical properties of the new and primary fractures of a multi-fractured rock mass under the action of stress loading. The experimental system for the recemented multi-fractured rock mass was developed to validate the above theory. First, a rock mass failure test was conducted. Then, the failure stress state was kept constant, and the fractured rock mass was grouted and cemented. A secondary loading was applied until the grouted mass reached the intended strength to investigate the bearing capacity of the recemented multi-fractured rock mass, and an acoustic emission (AE) system was used to monitor AE events and the update of damage energy. The results show that the initial fracture angle and direction had a significant effect on the re-failure process of the cement rock mass; Compared with the monitoring results of the acoustic emission (AE) measurements, the master control surface, key blocks and other control factors in the multi-fractured rock mass were obtained; The triangular shaped block in rock mass plays an important role in the stress and displacement change of multi-fracture rock mass and the long fissure and the fractures with close fracture tip are easier to activate, and the position where the longer fractures intersect with the smaller fractures is easier to generate new fractures. The results are of great significance to a multi-block structure, which affects the safety of underground coal mining.

A new phantom to evaluate the tissue dissolution ability of endodontic irrigants and activating devices

  • Kimia Khoshroo ;Brinda Shah;Alexander Johnson ;John Baeten ;Katherine Barry;Mohammadreza Tahriri ;Mohamed S. Ibrahim;Lobat Tayebi
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.4
    • /
    • pp.45.1-45.8
    • /
    • 2020
  • Objective: The aim of this study was to introduce a gelatin/bovine serum albumin (BSA) tissue standard, which provides dissolution properties identical to those of biological tissues. Further, the study evaluated whether the utilization of endodontic activating devices led to enhanced phantom dissolution rates. Materials and Methods: Bovine pulp tissue was obtained to determine a benchmark of tissue dissolution. The surface area and mass of samples were held constant while the ratio of gelatin and BSA were varied, ranging from 7.5% to 10% gelatin and 5% BSA. Each sample was placed in an individual test tube that was filled with an appropriate sodium hypochlorite solution for 1, 3, and 5 minutes, and then removed from the solution, blotted dry, and weighed again. The remaining tissue was calculated as the percent of initial tissue to determine the tissue dissolution rate. A radiopaque agent (sodium diatrizoate) and a fluorescent dye (methylene blue) were added to the phantom to allow easy quantification of phantom dissolution in a canal block model when activated using ultrasonic (EndoUltra) or sonic (EndoActivator) energy. Results: The 9% gelatin + 5% BSA phantom showed statistically equivalent dissolution to bovine pulp tissue at all time intervals. Furthermore, the EndoUltra yielded significantly more phantom dissolution in the canal block than the EndoActivator or syringe irrigation. Conclusions: Our phantom is comparable to biological tissue in terms of tissue dissolution and could be utilized for in vitro tests due to its injectability and detectability.

Assessment of Thermal Protection Performance of Firefighting Garments for Hydrogen Jet Fire (수소제트화재에 대한 특수 방화복의 열 방호 성능시험 평가)

  • UNGGI YOON;BYOUNGJIK PARK;YANGKYUN KIM;SUNGWOOK KANG;OHKKUN LIM
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.3
    • /
    • pp.310-317
    • /
    • 2024
  • In this study, Aimed to develop technology to ensure the safety of firefighters responding to hydrogen incidents and to review the performance of protective super absorbent polymer (SAP) that could help maintain the thermal protection performance of equipment with protective properties. Tests were conducted, including bench-scale and full-scale thermal exposure tests, to review the protective performance of SAP using firefighting garments commonly used by firefighters. The results showed that without SAP application, 2nd degree burn areas were measured at 9.4%, and 3rd degree burn areas at 7.7%. In contrast, when SAP was applied, the percentage of 2nd degree burn areas decreased to 7% on the lower body, and there was no temperature rise causing 3rd degree burns. Therefore, it is expected that by applying SAP to the outer surface of firefighter garments, even under temporarily high temperature conditions such as hydrogen jet flames, thermal damage to firefighters could be protected for a certain period.

Performance Evaluation of Structure Strengthening Using Sprayed FRP Technique (분사식 FRP공법을 이용한 구조물 보강 성능평가)

  • Chang, Chun-Ho;Jang, Kwang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.4 s.56
    • /
    • pp.126-136
    • /
    • 2009
  • The sprayed FRP strengthening technique is combining the Glass fiber and Polyester resin in open air and spraying randomly at concrete's surface with high-speed compressed air. Then it strengthens the structures with a new technique evaluated the structural performance. We applied it to concrete beam and tested for flexural strength, depended on Korea Standard(KS F 2408). Then based on the result of flexural strength, the properties were proposed that applying to structures. Based on the experiment, we have evaluated structural performance by the experiment. 1/5 scale prestressed concrete I-beam were made by Korean Highway's typical drawing in 1993. With these test results, 49.8% increased in flexural strength, improvement of the behavior of serviceability state, and strengthening was surely effective for controlling deflection and crack of structure. Consequently, it can be summarized that Sprayed FRP technique has prospect to improve the performance of structure.

Arsenic Removal Mechanism of the Residual Slag Generated after the Mineral Carbonation Process in Aqueous System (광물탄산화 공정 이후 발생하는 잔사슬래그의 수계 내 비소 제거 기작)

  • Kim, Kyeongtae;Latief, Ilham Abdul;Kim, Danu;Kim, Seonhee;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.377-388
    • /
    • 2022
  • Laboratory-scale experiments were performed to identify the As removal mechanism of the residual slag generated after the mineral carbonation process. The residual slags were manufactured from the steelmaking slag (blast oxygen furnace slag: BOF) through direct and indirect carbonation process. RDBOF (residual BOF after the direct carbonation) and RIBOF (residual BOF after the indirect carbonation) showed different physicochemical-structural characteristics compared with raw BOF such as chemical-mineralogical properties, the pH level of leachate and forming micropores on the surface of the slag. In batch experiment, 0.1 g of residual slag was added to 10 mL of As-solution (initial concentration: 203.6 mg/L) titrated at various pH levels. The RDBOF showed 99.3% of As removal efficiency at initial pH 1, while it sharply decreased with the increase of initial pH. As the initial pH of solution decreased, the dissolution of carbonate minerals covering the surface was accelerated, increasing the exposed area of Fe-oxide and promoting the adsorption of As-oxyanions on the RDBOF surface. Whereas, the As removal efficiency of RIBOF increased with the increase of initial pH levels, and it reached up to 70% at initial pH 10. Considering the PZC (point of zero charge) of the RIBOF (pH 4.5), it was hardly expected that the electrical adsorption of As-oxyanion on surface of the RIBOF at initial pH of 4-10. Nevertheless it was observed that As-oxyanion was linked to the Fe-oxide on the RIBOF surface by the cation bridge effect of divalent cations such as Ca2+, Mn2+, and Fe2+. The surface of RIBOF became stronger negatively charged, the cation bridge effect was more strictly enforced, and more As can be fixed on the RIBOF surface. However, the Ca-products start to precipitate on the surface at pH 10-11 or higher and they even prevent the surface adsorption of As-oxyanion by Fe-oxide. The TCLP test was performed to evaluate the stability of As fixed on the surface of the residual slag after the batch experiment. Results supported that RDBOF and RIBOF firmly fixed As over the wide pH levels, by considering their As desorption rate of less than 2%. From the results of this study, it was proved that both residual slags can be used as an eco-friendly and low-cost As remover with high As removal efficiency and high stability and they also overcome the pH increase in solution, which is the disadvantage of existing steelmaking slag as an As remover.

PROPERTIES OF FLUORIDE-RELEASING RESIN COMPOSITE RESTORATIVE MATERIALS (불소방출성 콤포짓트 레진계 수복재의 특성)

  • Kim, Sang-Hoon;Baik, Byeong-Ju;Kim, Jae-Gon;Yang, Yeon-Mi;Park, Jeong-Yeol
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.3
    • /
    • pp.418-426
    • /
    • 2008
  • The objectives of this study were to examine the properties of fluoride-releasing resin composite restorative materials. Four commercially available compomer materials (Compoglass F: CF, $Dyract^{(R)}$ AP: DA, $Dyract^{(R)}$ flow: DF, F2000: FT) and one fluoride-releasing composite resin ($Tetric^{(R)}$ Ceram: TC) were selected as experimental materials. Rectangular-shaped tensile test specimens were fabricated in a teflon mold giving 5mm in gauge length and 2mm in thickness. Disk-shaped specimens were fabricated in the split teflon mold with diameter of 15mm and thickness of 1mm. After curing for an hour, specimens were immersed in deionized water at $37^{\circ}C{\pm}1^{\circ}C$ for 30 days. All specimens were thermocycled for 10,000 cycles with 15 seconds of dwelling time in each $5^{\circ}C$ and $55^{\circ}C$ water baths. Toothbrush abrasion test was conducted under a load of 1.5 N and the abraded surfaces were examined with surface roughness tester (SV-3000, Mitutoyo Co, Japan) and SEM (JSM-5800, JEOL, Japan). Fluoride recharging was done by toothbrushing for 3 min. using a fluoride toothpaste (Perio Alpine Herb, LG Household & Health Care, Korea). The results obtained were summarized as follows; 1. The highest tensile strength value of 32.3 MPa was observed in TC group and the lowest value of 16.8 MPa was observed in CF group. The tensile strength of TC group was significantly higher than those of CF and DF groups (P<0.05). 2. The lowest Ra value of 0.287 was observed in TC group and the highest value of 1.516 was observed in FT group. The Ra value of FT group was significantly higher than other groups (P<0.05). 3. The abraded surfaces revealed the increase of surface roughness due to the protrusion and missing of filler particles. 4. The release of fluoride of compomers after tooth brushing by Perio Alpine Herb was initially large and then followed by small and continuously. But it remains small and constant in fluoride-releasing composite resin of TC. 5. The highest value of fluoride release after toothbrushing by Perio Alpine Herb was $2.064{\mu}g/cm^2$ in CF group and the lowest value was $0.1119{\mu}g/cm^2$ in TC group. The amount of fluoride release of CF group was significantly higher than other groups (P<0.05).

  • PDF

A STUDY ON THE MEASUREMENT OF THE IMPLANT STABILITY USING RESONANCE FREQUENCY ANALYSIS (공진 주파수 분석법에 의한 임플랜트의 안정성 측정에 관한 연구)

  • Park Cheol;Lim Ju-Hwan;Cho In-Ho;Lim Heon-Song
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.2
    • /
    • pp.182-206
    • /
    • 2003
  • Statement of problem : Successful osseointegration of endosseous threaded implants is dependent on many factors. These may include the surface characteristics and gross geometry of implants, the quality and quantity of bone where implants are placed, and the magnitude and direction of stress in functional occlusion. Therefore clinical quantitative measurement of primary stability at placement and functional state of implant may play a role in prediction of possible clinical symptoms and the renovation of implant geometry, types and surface characteristic according to each patients conditions. Ultimately, it may increase success rate of implants. Purpose : Many available non-invasive techniques used for the clinical measurement of implant stability and osseointegration include percussion, radiography, the $Periotest^{(R)}$, Dental Fine $Tester^{(R)}$ and so on. There is, however, relatively little research undertaken to standardize quantitative measurement of stability of implant and osseointegration due to the various clinical applications performed by each individual operator. Therefore, in order to develop non-invasive experimental method to measure stability of implant quantitatively, the resonance frequency analyzer to measure the natural frequency of specific substance was developed in the procedure of this study. Material & method : To test the stability of the resonance frequency analyzer developed in this study, following methods and materials were used : 1) In-vitro study: the implant was placed in both epoxy resin of which physical properties are similar to the bone stiffness of human and fresh cow rib bone specimen. Then the resonance frequency values of them were measured and analyzed. In an attempt to test the reliability of the data gathered with the resonance frequency analyzer, comparative analysis with the data from the Periotest was conducted. 2) In-vivo study: the implants were inserted into the tibiae of 10 New Zealand rabbits and the resonance frequency value of them with connected abutments at healing time are measured immediately after insertion and gauged every 4 weeks for 16 weeks. Results : Results from these studies were such as follows : The same length implants placed in Hot Melt showed the repetitive resonance frequency values. As the length of abutment increased, the resonance frequency value changed significantly (p<0.01). As the thickness of transducer increased in order of 0.5, 1.0 and 2.0 mm, the resonance frequency value significantly increased (p<0.05). The implants placed in PL-2 and epoxy resin with different exposure degree resulted in the increase of resonance frequency value as the exposure degree of implants and the length of abutment decreased. In comparative experiment based on physical properties, as the thickness of transducer increased, the resonance frequency value increased significantly(p<0.01). As the stiffness of substances where implants were placed increased, and the effective length of implants decreased, the resonance frequencies value increased significantly (p<0.05). In the experiment with cow rib bone specimen, the increase of the length of abutment resulted in significant difference between the results from resonance frequency analyzer and the $Periotest^{(R)}$. There was no difference with significant meaning in the comparison based on the direction of measurement between the resonance frequency value and the $Periotest^{(R)}$ value (p<0.05). In-vivo experiment resulted in repetitive patternes of resonance frequency. As the time elapsed, the resonance frequency value increased significantly with the exception of 4th and 8th week (p<0.05). Conclusion : The development of resonance frequency analyzer is an attempt to standardize the quantitative measurement of stability of implant and osseointegration and compensate for the reliability of data from other non-invasive measuring devices It is considered that further research is needed to improve the efficiency of clinical application of resonance frequency analyzer. In addition, further investigation is warranted on the standardized quantitative analysis of the stability of implant.

[Retraction] Characteristics and Optimization of Platycodon grandiflorum Root Concentrate Stick Products with Fermented Platycodon grandiflorum Root Extracts by Lactic Acid Bacteria ([논문 철회] 반응표면분석법을 이용한 젖산발효 도라지 추출물이 첨가된 도라지 농축액 제품의 최적화 연구)

  • Lee, Ka Soon;Seong, Bong Jae;Kim, Sun Ick;Jee, Moo Geun;Park, Shin Young;Mun, Jung Sik;Kil, Mi Ja;Doh, Eun Soo;Kim, Hyun Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.11
    • /
    • pp.1386-1396
    • /
    • 2017
  • The purpose of this study was to determine the optimum Platycodon grandiflorum root concentrate (PGRC, $65^{\circ}Brix$), fermented P. grandiflorum root extract by Lactobacillus plantarum (FPGRE, $2^{\circ}Brix$), and cactus Chounnyouncho extract (Cactus-E, $2^{\circ}Brix$) for preparation of PGRC stick product with FPGRE using response surface methodology (RSM). The experimental conditions were designed according to a central composite design with 20 experimental points, including three replicates for three independent variables such as amount of PGRC (8~12 g), FPGRE (0~20 g), and Cactus-E (0~20 g). The experimental data for the sensory evaluation and functional properties based on antioxidant activity and antimicrobial activity were fitted with the quadratic model, and accuracy of equations was analyzed by ANOVA. For the responses, sensory and functional properties showed significant correlation with contents of three independent variables. The results indicate that addition of PGRC contributed to increased bitterness and acridity based on the sensory test and antimicrobial activity, addition of FPGRE contributed to increased antioxidant activity and antimicrobial activity, and addition of Cactus-E contributed to increased fluidity based on the sensory test, antioxidant activity, and antimicrobial activity. Based on the results of RSM, the optimum formulation of PGRC stick product was calculated as PGRC 8.456 g, FPGRE 20.00 g, and Cactus-Ex 20.00 g with minimal bitterness and acridity, as well as optimized fluidity, antioxidant activity, and antimicrobial activity.

Experimental Study of Overtopping Void Ratio by Wave Breaking (쇄파에 의한 월파의 기포분율에 대한 실험적 연구)

  • Ryu, Yong-Uk;Lee, Jong-In
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.2
    • /
    • pp.157-167
    • /
    • 2008
  • The aeration of an overtopping wave on a vertical structure generated by a plunging wave was investigated through laboratory measurements of void fraction. The overtopping wave occurring after wave breaking becomes multi-phased and turbulent with significant aeration, so that the void fraction of the flow is of importance. In this study, fiber optic reflectometer and bubble image velocimetry were employed to measure the void fraction, velocity, and layer thickness of the overtopping flow. Mean properties were obtained by ensembleand time-averaging the repeated instantaneous void fractions and velocities. The mean void fractions show that the overtopping wave is very high-aerated near the overtopping wave front and relatively low-aerated near the deck surface and rear free surface of the wave. The flow rate and momentum of the overtopping flow estimated using the measured data show that the void ratio is an important parameter to consider in the multiphase flow. From the similarity profiles of the depth-averaged void fraction, velocity, and layer thickness, one-dimensional empirical equations were obtained and used to estimate the flow rate and momentum of the overtopping flow.

Graphene Oxide (GO) Layered Structure Ion Exchange Membrane Application for Vanadium Redox Flow Battery (VRB) System Study (산화그라핀 (Graphene Oxide, GO)이 코팅된 양이온 교환막을 용한 바나듐 레독스 흐름 전지 (Vanadium Redox Flow attery, VRB) 시스템에 관한 연구)

  • Lee, Kwan Ju;Chu, Young Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.2
    • /
    • pp.94-102
    • /
    • 2014
  • Cation exchange membrane (Nafion) was modified to reduce the vanadium ion permeation through the membrane and to increase the vanadium redox flow battery (VRB) system performance by coating the graphene oxide (GO) which has nano-plate like morphology. Modified membrane properties were studied by measuring the ion exchange capacity (I.E.C), water uptake and proton conductivity. The thickness of the coated layer on the surface of the Nafion membrane was observed as $0.93{\mu}m$ by SEM. Proton conductivity and vanadium ion permeability of the modified membrane were decreased to 27% and 25% compared to that of the commercial Nafion membrane respectively. VRB single cell performance test was performed to compare the system performance of the VRB applied with commercial Nafion membrane and modified membrane. VRB system applied with modified membrane showed higher coulombic efficiency and energy efficiency than the VRB system applied with the commercial Nafion membrane due to the reduction of the vanadium ion permeation. From these result, we could suggest that the membrane modification by coating the GO on the surface of the Nafion membrane could be one of the promising strategies to reduce the vanadium ion permeation and to increase the VRB system performance effectively.