• Title/Summary/Keyword: Surface Properties Test

Search Result 1,822, Processing Time 0.042 seconds

Preparation and Characterization of Porous Catalyst for Formaldehyde Removal using Domestic Low-grade Silica (국내산 저품위 실리카를 이용한 포름알데히드 제거용 다공성 촉매의 제조 및 특성)

  • Han, Yosep;Jeon, Ho-Seok;Kim, Seongmin
    • Resources Recycling
    • /
    • v.30 no.2
    • /
    • pp.68-74
    • /
    • 2021
  • This study investigated formaldehyde (HCHO) removal by preparing porous supports using domestic low-grade silica coated with Co-ZSM5 and Cu-ZSM5 as the catalysts. First, the sample of the raw material for the support contained 90% silica with quartz crystal phase, which was confirmed as low-grade silica. According to Energy-dispersive X-ray spectroscopy (EDS) and Fourier-transform infrared spectroscopy (FT-IR) analyses, the catalysts, Co-ZSM5 and Cu-ZSM5, were successfully coated on the surface of the porous silica supports. During the removal test of HCHO using the prepared Co-ZSM5 and Cu-ZSM5 coated beads, depending on the reaction temperature, the Co-ZSM5 coated beads exhibited higher removal efficiencies (>97%) than the Cu-ZSM5 beads at 200 ℃. The higher efficiency of the Co-ZSM5 coating may be attributed to its superior surface activity properties (BET surface area and pore volume) that lead to the favorable HCHO decomposition. Therefore, Co-ZSM5 was determined to be the suitable catalyst for removing HCHO as a coating on a porous support fabricated using domestic low-grade silica.

Evaluation of titanium surface properties by $Nd:YVO_4$ laser irradiation: pilot study ($Nd:YVO_4$ 레이저 조사에 따른 티타늄의 표면특성 평가: 예비 연구)

  • Kim, Ae-Ra;Park, Ji-Yoon;Kim, Yeon;Jun, Sei-Won;Seo, Yoon-Jeong;Park, Sang-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.3
    • /
    • pp.167-174
    • /
    • 2013
  • Purpose: This study was conducted to evaluate the roughness and surface alternations of three differently blasted titanium discs treated by $Nd:YVO_4$ Laser irradiation in different conditions. Materials and methods: Thirty commercially pure titanium discs were prepared and divided into three groups. Each group was consisted of 10 samples and blasted by $ZrO_2$ (zirconium dioxide), $Al_2O_3$ (aluminum oxide), and RBM (resorbable blasted media). All the samples were degreased by ultrasonic cleaner afterward. Nine different conditions were established by changing scanning speed (100, 300, 500 mm/s) and repetition rate (5, 15, 35 kHz) of $Nd:YVO_4$ Laser (Laser Pro D-20, Laserval $Korea^{(R)}$, Seoul, South Korea). After laser irradiation, a scanning electron microscope, X-ray diffraction analysis, energy dispersive X-ray spectroscopic analysis, and surface roughness analysis were used to assess the roughness and surface alternations of the samples. Results: According to a scanning electron microscope (SEM), titanium discs treated with laser irradiation showed characteristic patterns in contrast to the control which showed irregular patterns. According to the X-ray diffraction analysis, only $Al_2O_3$ group showed its own peak. The oxidation tendency and surface roughness of titanium were similar to the control in the energy dispersive X-ray spectroscopic analysis. The surface roughness was inversely proportional to the scanning speed, whereas proportional to the repetition rate of $Nd:YVO_4$. Conclusion: The surface microstructures and roughness of the test discs were modified by the radiation of $Nd:YVO_4$ laser. Therefore, laser irradiation could be considered one of the methods to modify implant surfaces for the enhancement of osseointegration.

Drying Shrinkage Properties of Latex Modified Concrete with Ordinary Cement and Rapid-Setting Cement (초속경 및 일반시멘트를 이용한 라텍스개질 콘크리트의 건조수축 특성)

  • Yun, Kyong-Ku;Jeong, Won-Kyong;Kim, Sung-Hwan;Lee, Joo-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.95-101
    • /
    • 2003
  • Drying shrinkage cracking which may be caused by the relatively large specific surface is a matter of grave concern for latex modified concrete(LMC) overlay and rapid-setting cement latex modified concrete(RSLMC) overlay. LMC and RSLMC were studied for field applications very actively in terms of strength and durability in Korea. However, there were no considerations in drying shrinkage. Therefore, the purpose of this dissertation was to study the drying shrinkage properties of LMC and RSLMC with the main experimental variables such as cement types(ordinary portland cement, rapid setting cement), latex contents(0, 5, 10, 15, 20%) and curing days at a same controlled environment of 60% of relative humidity and $20^{\circ}C$ of temperature. The drying shrinkage for specimens was measured with a digital dial gauge of Demec. The test results showed that the drying shrinkage of LMC and RSLMC were considerably lower than that of OPC and RSC, respectively. This might be attributed to the interlocking of hydrated cement and aggregates by a film of latex particles, water retention due to hydrophobic, and colloidal properties of the latexes resulting in reduced water evaporation.

Effect of Physical Properties and Bacterial Adherence Inhibition of Pit and Fissure Sealant Containing Bioactive Glass Nano Particles(BGn) (생체활성 유리 나노입자 첨가량에 따른 치면열구전색제의 물성평가와 세균부착 억제 효과)

  • Jun, Soo-Kyung;Kim, Dong-Ae
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.3
    • /
    • pp.542-549
    • /
    • 2018
  • In this study BGn-incorporated non-fluoride release of pit and fissure sealant $Concise^{TM}$ was developed to improve the mechanical properties and promote antibacterial effect of fit and fissure sealant with the original material. The mechanical properties and antibacterial activity of BGn incorporating vary-ing amounts bioactive glass nano particles(BGn) (0,0.5,1.0 and 2.0 wt% in sealant) were characterized composition of the resulting were investigated. The solubility to aid absorption was calculated by weighing specimens with a diameter of 10 mm and a thickness of 2 mm according to ISO 4049 (2009). The antimicrobial effect was evaluated using three strains of S. mutans, S. aureus and E. coli. The absorbance of the test results was as high as the addition of BGn increased, and the lower the solubility as the solubility was added(p<0.05). Adhesion experiment results S. mutans in contrast to the control group $Concise^{TM}$, BGn-added experimental group showed a somewhat lower adherent surface but no statistically significant difference was observed (p<0.05). However S. aureus and E. coli statistical analysis indicated a significant difference for antibacterial agents between control and BGn containing(p<0.05). It seems that this BGn proved that even a antibacterial effect was demonstrated. Therefore, it was suggest that the additional effects of BGn and research on a wide range of substances.

A Study on Properties of High Blaine Cement for Shotcrete (숏크리트용 고분말도 시멘트의 특성)

  • Kim, Jae-Young;Kim, Teuk-Jun;Lee, Min-Suk;Ryoo, Dong-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.633-640
    • /
    • 2010
  • This study was performed to get basic information about properties of high blaine cement for shotcrete use. Particle size distribution, setting time and compressive strength test, analysis like as SEM, DSC thermal analysis, XRD was carried out to investigate principle properties of high blaine cement. Setting time of high blaine cement was shorter and compressive strength was higher than those of ordinary portland cement (OPC). Results of analysis showed early hydration products of high blaine cement is smaller and spread widely due to increased specific surface. From the SEM observation and analysis of DSC and XRD results, it was seen that the aluminates accelerators promoted calcium aluminium hydrates while the alkali free accelerators increased ettringite and monosulfates formation. Strength and setting time measurement of cement paste with aluminate accelerator is more effective than the alkali free accelerator in reducing the setting time and increasing early strength while alkali free accelerator is more effective in increasing the strength after 7 days.

Influence of Oxidation Inhibitor on Carbon-Carbon Composites: 6. Studies on Friction and Wear Properties of Carbon-Carbon Composites (산화억제제 첨가에 의한 탄소/탄소 복합재료의 물성에 관한 연구 : 6. 탄소/탄소 복합재료의 마찰 및 마모특성)

  • Park, Soo-Jin;Seo, Min-Kang;Lee, Jae-Rock
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.133-141
    • /
    • 2001
  • The friction and wear properties of carbon-carbon composites made with different weight percent of $MoSi_2$ as an oxidation inhibitor were investigated using a constant speed wear test apparatus in an oxidation environment. The results indicated the carbon-carbon composites undergoing an abrupt transition of friction coefficient, from low-friction behavior(${\mu}$=0.15~0.2) during normal wear regime to the high-friction behavior(${\mu}$=0.5~0.6) during dusting wear regime at the frictional temperature range of 150~180${\circ}C$. The existence of temperature-dependent friction and wear regimes implied that the performance of specimen made with carbon-carbon composites was markedly affected by the thermal properties of the composites. The carbon-carbon composites filled with MoSi2 exhibited two times lower coefficient of friction and wear rate in comparison with the composites without $MoSi_2$. Especially, the composites containing 4wt% $MoSi_2$ filler showed a significantly improved activation energy for wear due to the reduction of both the porosity and powdery debris film formation on sliding surface when compared to those without $MoSi_2$.

  • PDF

Fabrication and Characteristics of CFRC(Carbon Firber Reinforced Carbon Composites) Fabricated with Carbon Fiber and Coal Tar Pitch Matrix (석탄계 핏치를 결합재로한 탄소/탄소 복합재의 제조 및 특징)

  • Ju, Hyeok-Jong;Choe, Don-Muk;O, In-Seok
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.194-205
    • /
    • 1994
  • In this research, we attempt to fabricate an excellent CFRC(Carbon Fiber Reinforced Carbon), which has good thermal and mechanical properties, with 8H/satin woven fabric prepreg, high modulus and high strength type continuous carbon fiber and raw coal tar pitch(RCTP) matrix or THF soluble fraction(THFSP) matrix which has good graphitizability. Green bodies were fabricated with hot press molding technique and CFRC samples were made after carbonization, impregnation, recarbonization and graphitization steps. For the purpose of characterization of the physical properties, SEM, polarized light microscope, TGA were observed, and tested flexural strength, modulus and ILSS. After heat treating the THFSP matrix up to $2300^{\circ}C$, the value of $C_0$/2 was 3.380$\AA$, which is analogous to the structure of natural graphite and the value of 2$\theta$ is $26.276^{\circ}$ approached to the Bragg's angle of natural graphite. As a result of TGA to test the high temperature air oxidation, the THFSP matrix, graphitized up to $2300^{\circ}C$, exhibited the best air oxidation resistance. And mechanical properties were increased up to 65~70% as fiber volume fraction increased. Because of the good orientation graphitizability, the fracture surface of THFSP matrix CFRC is very good.

  • PDF

Interfacial Properties and Stress-Cure Sensing of Single-Shape Memory Alloy (SMA) Fiber/Epoxy Composites using Electro-Micromechanical Techniques (미세역학적 시험법을 이용한 단-섬유 형태 형상기억합금/에폭시 복합재료의 계면특성 및 응력-경화 감지능)

  • Jang, Jung-Hoon;Kim, Pyung-Gee;Wang, Zuo-Jia;Lee, Sang-Il;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.9 no.3
    • /
    • pp.20-26
    • /
    • 2008
  • It is well know that the structure of shape memory alloy (SMA) can change from martensite austenite by either temperature or stress. Due to their inherent shape recovery properties, SMA fiber can be used such as for stress or cure-monitoring sensor or actuator, during applied stress or temperature. Incomplete superelasticity was observed as the stress hysteresis at stress-strain curve under cyclic loading test and temperature change. Superelasticity behavior was observed for the single-SMA fiber/epoxy composites under cyclic mechanical loading at stress-strain curve. SMA fiber or epoxy embedded SMA fiber composite exhibited the decreased interfacial properties due to the cyclic loading and thus reduced shape memory performance. Rigid epoxy and the changed interfacial adhesion between SMA fiber and epoxy by the surface treatment on SMA fiber exhibited similar incomplete superelastic trend. Epoxy embedded single SMA fiber exhibited the incomplete recovery during cure process by remaining residual heat and thus occurring residual stress in single SMA fiber/epoxy composite.

  • PDF

Thermal and Mechanical Properties of Epoxy Composites Using Silica Powder (실리카 파우더를 이용한 에폭시 복합소재의 열적/기계적 특성)

  • Lee, Hye Ryeon;Song, JeeHye;Kim, Daeyeon;Lim, Choong-Sun;Seo, BongKuk
    • Journal of Adhesion and Interface
    • /
    • v.17 no.1
    • /
    • pp.7-14
    • /
    • 2016
  • Epoxy composites with concentrations of 5-70 wt% of silica particles were prepared in order to improve mechanical property and poor thermal stability. The mechanical and thermal properties were investigated and compared to the corresponding properties of neat epoxy composite. Furthermore, the effects of silane compound treatment on silica particles were observed by the experimental results of the tensile strength, glass transition temperature, and thermal stability of epoxy composite. Tensile strength of epoxy composites was measured by universal testing machine (UTM) and after that, the structure and morphology analysis of epoxy nanocomposites were analyzed by field emission scanning electron microscope (FE-SEM) and energy dispersive spectroscopy (EDS). The increased solid content of CA0030 particle improved the tensile strength of epoxy/ modified composites to give 30-50 MPa. The thermal expansion coefficients (CTE) of neat epoxy resin and epoxy/silica composites measured with a thermomechanical analyzer (TMA) showed that the incorporation of silica particles was helpful to reduce the CTE of neat epoxy resin.

Effect of Mineral Admixture on Bond Properties between Polyolefin Based Synthetic Fiber and Cement Mortar (폴리올레핀계 합성 섬유와 시멘트 모르타르와의 부착 특성에 미치는 광물질 혼화재의 효과)

  • Lee, Jin-Hyeong;Park, Chan-Gi
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.339-346
    • /
    • 2011
  • The effects of mineral admixtures on the bonding properties of cement mortar to polyolefin based synthetic fiber were evaluated. The mineral admixtures consisted of 0%, 5%, 10%, and 15% fly ash, blast furnace slag, and metakaolin in cement. Bond interactions between the cement mortar and the polyolefin based synthetic fiber were determined by Dog-bone bond tests. Bond tests of the polyolefin based synthetic fiber showed an increase in pullout load with the strength of the cement mortar. Also, the interface toughness of polyolefin based synthetic fiber in cement mortar increased as the fly ash, blast furnace slag, and metakaolin contents increased. The microstructure of polyolefin based synthetic fiber surface was examined after the pullout test to analyze the frictional resistant force according to the replacement ratio of fly ash, blast furnace slag, and metakaolin during the pullout process of polyolefin based synthetic fiber in cement mortar. The scratched of polyolefin based synthetic fibers increased with the replacement ratio of fly ash, blast furnace slag, and metakaolin. Also, the interface toughness was enhanced by adhesion forces induced by the fly ash, blast furnace slag, and metakaolin.