• Title/Summary/Keyword: Surface Plasmon Polariton (SPP)

Search Result 8, Processing Time 0.023 seconds

Analysis of Planar Metal Plasmon Waveguides

  • Jung, Jae-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.97-102
    • /
    • 2010
  • Propagation modes of symmetric metal-insulator-metal SPP waveguides are analyzed. Main characteristics of these waveguides such as mode effective index, propagation length, and penetration depths are calculated at the telecom wavelength for different layer thickness. We adopt Au, Al as a metal material and air, glass as a dielectric material and obtain different optical characteristics. The surface plasmon characteristics in this paper provide a numerical insight for designing nanostructure metal plasmon waveguide.

10 Gbps Optical Signal Transmission via Long-Range Surface Plasmon Polariton Waveguide

  • Ju, Jung-Jin;Kim, Min-Su;Park, Sun-Tak;Kim, Jin-Tae;Park, Seung-Koo;Lee, Myung-Hyun
    • ETRI Journal
    • /
    • v.29 no.6
    • /
    • pp.808-810
    • /
    • 2007
  • We demonstrate 10 Gbps optical signal transmission via long-range surface plasmon polaritons (LR-SPPs) in a very thin metal strip-guided geometry. The LR-SPP waveguide was fabricated as a 14 nm thick, 2.5 ${\mu}m$ wide, and 4 cm long gold strip embedded in a polymer and pigtailed with single-mode fibers. The total insertion loss of 16 dB was achieved at a wavelength of 1.55 ${\mu}m$ as a carrier wave. In a 10 Gbps optical signal transmission experiment, the LR-SPP waveguide exhibits an excellent eye opening and a 2.2 dB power penalty at $10^{-12}$ bit error rate. We confirm, for the first time, that LR-SPPs can efficiently transfer data signals as well as the carrier light.

  • PDF

Modulator of surface plasmon polariton based cycle branch graphene waveguide

  • Zhu, Jun;Xu, Zhengjie;Xu, Wenju;Wei, Duqu
    • Carbon letters
    • /
    • v.25
    • /
    • pp.84-88
    • /
    • 2018
  • At present, an important research area is the search for materials that are compatible with CMOS technology and achieve a satisfactory response rate and modulation efficiency. A strong local field of graphene surface plasmon polariton (SPP) can increase the interaction between light and graphene, reduce device size, and facilitate the integration of materials with CMOS. In this study, we design a new modulator of SPP-based cycle branch graphene waveguide. The structure comprises a primary waveguide of graphene-$LiNbO_3$-graphene, and a secondary cycle branch waveguide is etched on the surface of $LiNbO_3$. Part of the incident light in the primary waveguide enters the secondary waveguide, thus leading to a phase difference with the primary waveguide as reflected at the end of the branch and interaction coupling to enhance output light intensity. Through feature analysis, we discover that the area of the secondary waveguide shows significant localized fields and SPPs. Moreover, the cycle branch graphene waveguide can realize gain compensation, reduce transmission loss, and increase transmission distance. Numerical simulations show that the minimum effective mode field area is about $0.0130{\lambda}^2$, the gain coefficient is about $700cm^{-1}$, and the quality factor can reach 150. The structure can realize the mode field limits of deep subwavelength and achieve a good comprehensive performance.

Analysis and Design of Surface Plasmon Waveguide

  • Kim, Min-Wook;Jung, Jae-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.7-11
    • /
    • 2009
  • In this paper, we developed and presented a design result for optimizing the geometry of Ag circular SPP waveguide for subwavelength waveguide applications. We investigated the effect of the design parameters on the light propagation and find the optimum design for small modal size, high coupling coefficient, and low sensitivity. The results show that the globally optimal design locates optimal waveguide geometries more efficiently than individual optimal points for multivalued objective function.

  • PDF

Directional Radiation of Surface Plasmon Polaritons at Visible Wavelengths through a Nanohole Dimer Optical Antenna Milled in a Gold Film

  • Janipour, Mohsen;Hodjat-Kashani, Farrokh
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.799-808
    • /
    • 2014
  • The mechanism of optical interaction of two nanoholes, milled in an opaque gold film, by means of surface plasmon polariton (SPP) propagation is investigated. The interaction depends on the polarization direction of the incident light when the nanohole pair is illuminated through uniform single antenna excitations. It is shown that by illuminating one of the nanoholes, under single antenna excitation, the other nanohole can be excited indirectly via propagated SPPs from the excited nanohole. In addition, it is found that the spectrum of electromagnetic power above the surface of the metallic film at an arbitrary point along the axis of the nanohole pair presents two resonant peaks. These peaks are due to the optical interaction between nanoholes, where the short- and long-wavelength peaks can be assigned to in-phase and antiphase interactions of magnetic dipoles relative to each nanohole, respectively. The magnetic coupled dipole approximation (MCDA) method confirms the simulation results.

Long-Range Surface Plasmon-Polariton Wavelength Filter based on Asymmetric Double-Electrode Structure (비대칭 이중-금속 장거리 표면-플라즈몬 도파로를 이용한 파장필터)

  • Shim, Yu-Tae;Joo, Yang-Hyun;Song, Seok-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.6
    • /
    • pp.429-434
    • /
    • 2008
  • We propose a wavelength filter based on long-range surface plasmon-polaritons (LR-SPP) supported by a asymmetric doubleelectrode LR-SPP structure. For the case of the asymmetric double-layered LR-SPP waveguide, LR-SPPs exist with a much broader range of index mismatches between core and clad materials. Thus, the asymmetric double-electrode LR-SPP waveguide is adequate to form a plasmonic band-gap device as we report in this paper by studying Bragg-reflection wavelength filter based on it. The structure for wavelength filter operating telecommunications wavelength is designed by using the method of line (MoL) and the transfer matrix method. The fabricated device shows a relatively high extinction ratio of 50 dB with a bandwidth of 2 nm, and the performance is very consistent with numerical simulations.

Light Coupling between Plasmonic Nanowire and Nanoparticle

  • Kim, Kyoung-Ho;No, You-Shin
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1283-1288
    • /
    • 2018
  • In this work, we investigate polarization-dependent excitation of the propagating surface plasmon polariton (SPP) modes in gold nanowires (Au NWs) combined with gold nanoparticles (Au NPs). The light coupling from focused light to SPPs on Au NWs is investigated for different structural combinations of Au NWs with Au NPs, using full-wave finite-element numerical simulations. The results show that the excitation of SPPs changes remarkably on varying the orientation of the NP on NW or the polarization angle of the incident light. Metallic NWs combined with NPs can be applied to the polarization-resolved SPP coupling in various optical and optoelectronic devices including photonic circuits and optical sensors.

The Influence of Rapid Thermal Annealing Processed Metal-Semiconductor Contact on Plasmonic Waveguide Under Electrical Pumping

  • Lu, Yang;Zhang, Hui;Mei, Ting
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.130-134
    • /
    • 2016
  • The influence of Au/Ni-based contact formed on a lightly-doped (7.3×1017cm−3, Zn-doped) InGaAsP layer for electrical compensation of surface plasmon polariton (SPP) propagation under various rapid thermal annealing (RTA) conditions has been studied. The active control of SPP propagation is realized by electrically pumping the InGaAsP multiple quantum wells (MQWs) beneath the metal planar waveguide. The metal planar film acts as the electric contact layer and SPP waveguide, simultaneously. The RTA process can lower the metal-semiconductor electric contact resistance. Nevertheless, it inevitably increases the contact interface morphological roughness, which is detrimental to SPP propagation. Based on this dilemma, in this work we focus on studying the influence of RTA conditions on electrical control of SPPs. The experimental results indicate that there is obvious degradation of electrical pumping compensation for SPP propagation loss in the devices annealed at 400℃ compared to those with no annealing treatment. With increasing annealing duration time, more significant degradation of the active performance is observed even under sufficient current injection. When the annealing temperature is set at 400℃ and the duration time approaches 60s, the SPP propagation is nearly no longer supported as the waveguide surface morphology is severely changed. It seems that eutectic mixture stemming from the RTA process significantly increases the metal film roughness and interferes with the SPP signal propagation.