• Title/Summary/Keyword: Surface Pitting

Search Result 244, Processing Time 0.023 seconds

Surface Treatment of 304L Stainless Steel for Improving The Pitting Corrosion Resistance by Inhibitor

  • Hue Nguyen Viet;Kwon Sik Chol
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.3
    • /
    • pp.277-283
    • /
    • 2003
  • Electrochemical techniques were used to study the surface treatment for improving the pitting corrosion resistance of 304L stainless steel by inhibitors in chloride medium. Sodium molybdate (in concentration range : 0.005-80 g/l) , sodium nitrite (in concentration range : 0.001-50 g/l) and their mixture were used for this study. It was found that, molybdate and nitrite were good passivators for 304L stainless steel, but molybdate was not able to prohibit the pitting ; nitrite prevented pitting corrosion of 304L stainless steel only at the concentration more than 25 g/l. The relationship between pitting potentials and concentrations of inhibitors in the logarithm expression obeyed the linear function. It was found that the surface treatment by mixture of two inhibitors enables stainless steel to have increased the corrosion resistance , the pitting corrosion of 304L stainless steel was completely prohibited by the mixtures of molybdate and nitrite in ratio min, with $m\;\geq\;3\;and\;n\;\geq\;10$. The interesting cases on electrochemical measurement of threshold of inhibitors concentration combination for optimum surface treatment were described.

Corrosion Behavior and Inhibition Studies of AZ31B Magnesium Alloy With and Without Cl- in the Alkaline Electrolytes in Addition with Various Inhibitor Additives

  • Shin, Yoonji;Cho, Kyehyun
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.243-252
    • /
    • 2019
  • The pitting corrosion and inhibition studies of AZ31B magnesium alloy were investigated in the alkaline solution (pH12) with chloride and inhibitors. The corrosion behavior of passive film with/without Cl- in the alkaline electrolyte were conducted by polarization curve and immersion tests in the presence of various additives (inhibitors) to clarify the inhibition efficiency of pitting corrosion at higher potential region. Critical concentration of pitting corrosion for Mg alloy was evaluated with 0.005 M NaCl in 0.01 M NaOH on the anodic polarization behavior. Critical pitting of AZ31B Mg alloy in 0.01 M NaOH is a function of chlorides; Epit = - 1.36 - 0.2 log [Cl-]. When the Sodium Benzoate (SB) was only used as an inhibitor, a few metastable pits developed on the Mg surface by an immersion test despite no pitting corrosion on the polarization curve meaning that adsorption of SB on the surface is insufficient protection from pitting corrosion in the presence of chloride. The role of SB and Sodium Dodecylbenzenesulfonate (SDBS) inhibitors for the Mg alloy surface in the presence of chloride was suppressed from pitting corrosion to co-adsorb on the Mg alloy surface with strong formation of passive film preventing pitting corrosion.

A Study on the Pitting Corrosion Resistance of Laser Surface Treated Nickel-Base Alloy (레이저 표면처리된 Nickel-Base 합금의 공식 저항성 연구)

  • Song, Myeong-Ho;Kim, Yong-Gyu
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.217-225
    • /
    • 1999
  • The effect on the pitting corrosion resistance of laser welding and surface treatment developed as a repair method of stream generator tubing material that was a major component of primary system at nuclear power plant was observed. Some heat-treated Alloy 600 tubing materials used at domestic nuclear power plants were laser-surface observed. Some heat-treated Alloy 600 tubing materials used at domestic nuclear power plants were laser-surface melted and the microstructural characteristics were examined. The pitting corrosion resistance was examined through Ep(pitting potential) and degree of pit generation by means of the electrochemical tests and the immersion tests respectively. The pit formation characteristics were investigated through microstructural changes and the pit initiation site and pit morphology. The test results showed that the pitting corrosion resistances was increased in the order of the followings; sensitized Alloy 600, solution annealed alloy600, and laser surface melted Alloy 600. Pits were initiated preferably at Ti-containing inclusions and their surroundings in all tested specimens and it is believed that higher pitting resistance of laser-surface treated Alloy 600 was caused by fine, homogeneous distribution of non-soluble inclusions, the disappearance of grain boundary, and the formation of dense, stable oxide film. The major element of corrosion products filled in the pit was Cr. On the other hand, Fe was enriched in the deposit formed on the pit.

  • PDF

Effects of Plasma-Nitriding on the Pitting Corrosion of Fe-30at%Al-5at%Cr Alloy (Fe-30at.%Al-5at.%Cr계 합금의 공식특성에 미치는 플라즈마질화의 영향)

  • 최한철
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.480-490
    • /
    • 2003
  • Effects of plasma-nitriding on the pitting corrosion of Fe-30at%Al-5at%Cr alloy containing Ti, Hf, and Zr were investigated using potentiostat in 0.1M HCl. The specimen was casted by the vacuum arc melting. The subsequent homogenization was carried out in Ar gas atmosphere at $1000^{\circ}C$ for 7days and phase stabilizing heat treatment was carried out in Ar gas atmosphere at $500^{\circ}C$ for 5 days. The specimen was nitrided in the $N_2$, and $H_2$, (1:1) mixed gas of $10^{-4}$ torr at $480^{\circ}C$ for 10 hrs. After the corrosion tests, the surface of the tested specimens were observed by the optical microscopy and scanning electron microscopy(SEM). For Fe-30at%Al-5Cr alloy, the addition of Hf has equi-axied structure and addition of Zr showed dendritic structure. For Fe-30at%Al-5Cr alloy containing Ti, plasma nitriding proved beneficial to decrease the pitting corrosion attack by increasing pitting potential due to formation of TiN film. Addition of Hf and Zr resulted in a higher activation current density and also a lower pitting potential. These results indicated the role of dendritic structure in decreasing the pitting corrosion resistance of Fe-30Al-5Cr alloy. Ti addition to Fe-30Al-5Cr decreased the number and size of pits. In the case of Zr and Hf addition, the pits nucleated remarkably at dendritic branches.

Critical Pitting Temperature of 2205 Duplex Stainless Steels Using Immersion and Electrochemical Polarization Test Methods (침지시험법 및 전기화학적 분극법에 의한 2205 이상 스테인리스강의 임계공식온도 측정 비교)

  • Shin Jae-Ho;Lee Jae-Bong
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.1
    • /
    • pp.18-24
    • /
    • 2006
  • Although stainless steels have the excellent corrosion resistance by passive film, they are susceptible to pitting corrosion in the environment containing halogen elements such as chloride ions. The resistance to pitting corrosion can be evaluated by measuring the critical pitting temperature (CPT). CPT values can be obtained using immersion, potentiodynamic and potentiostatic polarization test methods. Results on duplex 2205 stainless steels showed that CPT values were measured as $50^{\circ}C,\;55^{\circ}C\;and\;61^{\circ}C$, respectively for immersion, potentiodynamic and potentiostatic polarization test methods, depending upon the different test methods, even though the difference between CPT values are not much.

Effects of Laser Surface Melting on the Pitting Resistance of Alloy 690 (Alloy 690의 공식저항성에 미치는 레이저 표면 용융의 영향)

  • Kim, Young-Kyu;Jhee, Tae-Gu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.3
    • /
    • pp.145-150
    • /
    • 2001
  • The effect of laser welding and surface treatment, developed as a method of repairing steam generator tubes, on the pitting corrosion resistance of alloy 690 was examined. The surfaces of some heat-treated Alloy 690 materials were melt-treated using the Nd-YAG laser beam, and then examined to characterize the microstructures. The resistance to pitting corrosion was evaluated by measuring of Ep(pitting potential) through the electrochemical tests and also by measuring the degree of pit generation through the immersion tests. The pit formation characteristics were investigated by observing microstructural changes and pit morphologies. The results show that the resistance to pitting corrosion increases in the order of the following list; solution annealed Alloy 690, thermally treated Alloy 690, and laser surface melt-treated Alloy 690. The melted region was found to have a cellular structure and fine precipitates. It was confirmed that the resistance of Alloy 690 to pit initiation and also to pit propagation was higher when it was laser treated than treated otherwise.

  • PDF

A Study on the Initiation of Pitting Corrosion of Fe-17Cr Alloy Using Micro-Droplet Cell Technique (Micro-droplet cell을 이용한 Fe-17Cr 합금의 공식 발생에 대한 연구)

  • Kim, Jae-Jung;Lee, Jae-Bong
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.809-816
    • /
    • 2008
  • The influences of various parameters such as inclusions, surface roughness, exposed areas and chloride ion concentrations on the initiation of pitting of Fe-17Cr alloy were investigated, using micro-droplet cell technique. Micro-droplet cell allows one to align the micro-electrode to the desired spot of the working electrode and measure directly local currents with the potentiodynamic polarization. Micro electrochemical tests were carried out at the inclusions after EDX analysis of inclusion. EDX analysis identified inclusions as Cr-oxides. It was found that some active inclusions among Cr-oxide inclusions acted as initiation sites for pitting corrosion. In addition, the rougher surface and the denser chloride ion concentration offered easier pit initiation sites, causing the more susceptible to pitting corrosion.

Effect of Equal Channel Angular Pressing on the Pitting Corrosion Resistance of Hard Anodized Al5052 Alloy (경질양극산화를 실시한 Al5052합금의 내공식성에 미치는 ECAP의 영향)

  • Son, Injoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.4
    • /
    • pp.142-148
    • /
    • 2015
  • The effect of equal channel angular pressing (ECAP) on the pitting corrosion resistance of hard anodized Al5052 alloy was investigated. The degree of internal stress generated in anodic oxide films during hard anodization was also evaluated with a strain gauge method. The pitting corrosion resistance of hard anodized Al5052 alloy was greatly decreased by ECAP. Cracks occurred in the anodic oxide film during hard anodization and these cracks were larger and deeper in the alloy with ECAP than without. The pitting corrosion was accelerated by cracks. The internal stress present in the anodic oxide films was compressive and the stress was higher in the alloys with ECAP than without, resulting in an increased likelihood of cracks. The pitting corrosion resistance of hard anodized Al5052 alloy was improved by annealing at the range of 473-573K after ECAP processed at room temperature for four passes. The compressive internal stress gradually decreased with increasing annealing temperature. It is assumed that the improvement in the pitting corrosion resistance of hard anodized Al5052 alloy by annealing may be attributed to a decrease in the likelihood of cracks due to the decreased internal stresses in anodic oxide films.

Inhibition of Rebar Corrosion by Carbonate and Molybdate Anions

  • Tan, Y.T.;Wijesinghe, S.L.;Blackwood, D.J.
    • Corrosion Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.167-174
    • /
    • 2017
  • Bicarbonate/carbonate and molybdate anions have been characterized for their inhibitive effect on pitting corrosion of carbon steel in simulated concrete pore solution by using electrochemical tests such as electrochemical impedance (EIS) and linear polarization (LP). It was revealed that bicarbonate/carbonate has a weak inhibitive effect on pitting corrosion that is approximately one order of magnitude lower compared to hydroxide. Molybdate is effective against pitting corrosion induced by the concentration of chloride as low as 113 mM and can increase the pitting potential of a previously pitted sample to the oxygen evolution potential by the concentration of molybdate as much as 14.6 mM only. The formation of a $CaMoO_4$ film on the surface hinders the reduction of dissolved oxygen on the steel surface, reducing corrosion potential and increasing the safety margin between corrosion potential and pitting potential further. In addition, pore-plugging by $FeMoO_4$ as a type of salt film within pits increases the likelihood of repassivation.

Estimation of Stress Intensity Factors for 3-Dimensional Surface Defects under Axial Tensile Loads Using the Finite Element Method

  • Jeon, Byung-Young;Kumar, Y.V. Satish;Kang, Sung-Won
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.267-272
    • /
    • 2002
  • Pitting corrosion is a very common occurrence in marine structures. Therefore, the 3-D finite element analysis is carried out to determine the stress intensity factors at the pit depth and also at the surface of the pit. The pits are modeled as a part of sphere, based on the pit depth and the pit diameter as specified by the Ship Structural Committee. The pit depth and pit diameter are function of the percentage of pitting that the plate is subjected to. A dog-bone shaped specimen is subjected to different intensities of pitting and the stress intensity factors are determined under axial tensile loads.

  • PDF