• Title/Summary/Keyword: Surface Model

Search Result 10,478, Processing Time 0.035 seconds

Response Surface Methodology based on the D-optimal Design for Cell Gap Characteristic for Flexible Liquid Crystal Display (D-optimal Design을 이용한 Flexible 액정 디스플레이용 셀 갭 특성에 대한 반응 표면 분석)

  • Ko, Young-Don;Hwang, Jeoung-Yeon;Seo, Dae-Shik;Yun, Il-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.510-513
    • /
    • 2004
  • This paper represents the response surface model for the cell gap on the flexible liquid crystal display (LCD) process. Using response surface methodology (RSM). D-optimal design is carried out to build the design space and the cell gap is characterized by the quadratic model. The statistical analysis is used to verify the response surface model. This modeling technique can predict the characteristics of the desired response, cell gap, varying with process conditions.

  • PDF

Prediction of Surface Roughness in Hole Machining Using an Endmill (엔드밀을 활용한 홀 가공 시 표면거칠기 예측에 관한 연구)

  • Chun, Se-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.42-47
    • /
    • 2019
  • Helical machining is an efficient method for machining holes using an endmill. In this study, a surface roughness prediction model was constructed for improving the productivity of hole machining. Experiments were conducted to form holes by the helical machining of AL6061-T4 aluminum sheets and correlation analysis was performed to examine the relationships between the variables based on the measured results. Meanwhile, a regression analysis technique was used to construct and evaluate the prediction model. Through these analyses, the parameter which has the greatest influence on the surface roughness when the hole is formed by the helical machining is the feed, followed by the number of revolutions of the endmill. Moreover, for the axial feed of the endmill, it was concluded that the influence of the surface roughness is small compared to the other two parameters but it is a factor worth considering to improve the accuracy when constructing the predictive model.

A Numerical Model for Plastic Shrinkage Cracking of Concrete Slab (콘크리트 슬래브의 소성수축균열 해석모델)

  • Kwak Hyo-Gyoung;Ha Soo-Jun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.448-455
    • /
    • 2005
  • In this paper, an analytical model for estimation of the time at which the concrete surface begins to dry is introduced to predict whether or not plastic shrinkage cracks occur. First of all, the validity of a consolidation model for bleeding of cement paste proposed by Tan et al. is verified by comparing the analytical results with the experimental results, and used to evaluate the rate and amount of bleed water of concrete. Also an analytical model for evaporation of bleed water which considers the effect of the temperature variation of concrete surface due to hydration heat on the evaporation rate is proposed, and the experimental and analytical results are then compared to verify the validity of the introduced model. In advance, the time at which the concrete surface begins to dry is estimated using above two analytical models, and compared with the experimental results about the time at which plastic shrinkage cracks occur. From the comparison, it is verified that the proposed model can predict the occurrence of plastic shrinkage cracking with comparative precision.

  • PDF

A Case Study for Finding an Efficient M&S Meta Model through Sequential Response Surface Methodology (축차적 반응표면 분석을 통한 M&S 메타모형 구축에 관한 사례 연구)

  • Kim, Sang-Ik;Kim, Yong-Dai;Lim, Yong-Bin;Choi, Ki-Heon;Kim, Jeong-Eun
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.1
    • /
    • pp.49-59
    • /
    • 2012
  • In computer simulation models the output from the computer code is often deterministic, i.e., running the code twice with the same values for the input variables would give the same output. It is discussed why the response surface method with polynomial approximation for the true response function is a good approximation to the computer experiments model. A sequential strategy to find the proper reduced quadratic polynomial model is illustrated with a case study in the military war game computer simulation model.

Analysis of Electric Fields Distribution Inside Optimal Model GIS with a Metal Impurity or a Void (최적화 모형의 고체 절연체 내부 공극 또는 금속 이물질 존재시의 GIS 내부 전계 분포 해석)

  • Min, Seok-Won;Song, Gi-Hyeon;Kim, Eung-Sik
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.11
    • /
    • pp.585-590
    • /
    • 2002
  • In this paper, the 3 dimensional surface charge method is applied to calculate electric fields distribution inside a general and an optimal model of GIS with a metal impurity and a void respectively. We know the optimal model can reduce tangential electric fields at solid insulator surface to 70% of the general model and infulence fields distribution near a metal impurity. Meanwhile, we find the optimal model does not decrease field distribution inside a void in the insulator.

A Study on the Application of Reverse Engineering for Impeller using Polynomial Regression (다항식회귀곡선을 통한 임펠러의 역공학 적용에 관한 연구)

  • Hwang J. D.;Jung J. Y.;Jung Y. G.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.103-109
    • /
    • 2004
  • This paper presents a fairing method for reverse engineering of a free-formed surface. Utilizing measured data points, reverse engineering is a useful method to construct a CAD model from physical model. Measured data points should be faired since raw data may have outliers. A fairing algorithm of polynomial regression model generates smooth curves of approximation in this paper. The faired curves are utilized to construct a free-formed surface. For a verifying example, an impeller blade is digitized with a CMM to collect raw data on the surfacce and a CAD model is constructed. This research produces impeller blades with 5-axis machining center through the CAD model and compares them with a physical model. As a result the produced surface modeled with the fairing method gives less error than that without the fairing.

A Study of the Propagation of Turbulent Premixed Flame Using the Flame Surface Density Model in a Constant Volume Combustion Chamber

  • Lee, Sangsu;Kyungwon Yun;Nakwon Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.564-571
    • /
    • 2002
  • Three-dimensional numerical analysis of the turbulent premixed flame propagation in a constant volume combustion chamber is performed using the KIVA-3V code (Amsden et. al. 1997) by the flame surface density (FSD) model. A simple near-wall boundary condition is eaployed to describe the interaction between turbulent premixed flame and the wall. A mean stretch factor is introduced to include the stretch and curvature effects of turbulence. The results from the FSD model are compared with the experimental results of schlieren photos and pressure measurements. It is found that the burned mass rate and flame propagation by the FSD model are in reasonable agreement with the experimental results. The FSD combustion model proved to be effective for description of turbulent premixed flames.

Adaptive Reconstruction of Multi-periodic Harmonic Time Series with Only Negative Errors: Simulation Study

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.721-730
    • /
    • 2010
  • In satellite remote sensing, irregular temporal sampling is a common feature of geophysical and biological process on the earth's surface. Lee (2008) proposed a feed-back system using a harmonic model of single period to adaptively reconstruct observation image series contaminated by noises resulted from mechanical problems or environmental conditions. However, the simple sinusoidal model of single period may not be appropriate for temporal physical processes of land surface. A complex model of multiple periods would be more proper to represent inter-annual and inner-annual variations of surface parameters. This study extended to use a multi-periodic harmonic model, which is expressed as the sum of a series of sine waves, for the adaptive system. For the system assessment, simulation data were generated from a model of negative errors, based on the fact that the observation is mainly suppressed by bad weather. The experimental results of this simulation study show the potentiality of the proposed system for real-time monitoring on the image series observed by imperfect sensing technology from the environment which are frequently influenced by bad weather.

IMAGE FUSION ACCURACY FOR THE INTEGRATION OF DIGITAL DENTAL MODEL AND 3D CT IMAGES BY THE POINT-BASED SURFACE BEST FIT ALGORITHM (Point-based surface best fit 알고리즘을 이용한 디지털 치아 모형과 3차원 CT 영상의 중첩 정확도)

  • Kim, Bong-Chul;Lee, Chae-Eun;Park, Won-Se;Kang, Jeong-Wan;Yi, Choong-Kook;Lee, Sang-Hwy
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.5
    • /
    • pp.555-561
    • /
    • 2008
  • Purpose: The goal of this study was to develop a technique for creating a computerized composite maxillofacial-dental model, based on point-based surface best fit algorithm and to test its accuracy. The computerized composite maxillofacial-dental model was made by the three dimensional combination of a 3-dimensional (3D) computed tomography (CT) bone model with digital dental model. Materials and Methods: This integration procedure mainly consists of following steps : 1) a reconstruction of a virtual skull and digital dental model from CT and laser scanned dental model ; 2) an incorporation of dental model into virtual maxillofacial-dental model by point-based surface best fit algorithm; 3) an assessment of the accuracy of incorporation. To test this system, CTs and dental models from 3 volunteers with cranio-maxillofacial deformities were obtained. And the registration accuracy was determined by the root mean squared distance between the corresponding reference points in a set of 2 images. Results and Conclusions: Fusion error for the maxillofacial 3D CT model with the digital dental model ranged between 0.1 and 0.3 mm with mean of 0.2 mm. The range of errors were similar to those reported elsewhere with the fiducial markers. So this study confirmed the feasibility and accuracy of combining digital dental model and 3D CT maxillofacial model. And this technique seemed to be easier for us that its clinical applicability can good in the field of digital cranio-maxillofacial surgery.

EMBEDDING OPEN RIEMANN SURFACES IN 4-DIMENSIONAL RIEMANNIAN MANIFOLDS

  • Ko, Seokku
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.205-214
    • /
    • 2016
  • Any open Riemann surface has a conformal model in any orientable Riemannian manifold of dimension 4. Precisely, we will prove that, given any open Riemann surface, there is a conformally equivalent model in a prespecified orientable 4-dimensional Riemannian manifold. This result along with [5] now shows that an open Riemann surface admits conformal models in any Riemannian manifold of dimension ${\geq}3$.