• Title/Summary/Keyword: Surface Impedance

Search Result 750, Processing Time 0.029 seconds

Analysis of the Periodic Microstrip Phased Array Antenna (주기적 마이크로스트립 위상 배열의 특성 해석)

  • 조영수;김동현이상설
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.335-338
    • /
    • 1998
  • This paper presents calculated results for the infinite phased arrays of the probe-fed rectagualr microstrip patches. A numerical model that is based on a rigorous Green's function and galerkin solutionsis is described. In an arbitrary scan plane, the input impedance and the input reflection coefficient versus the scand angle are calculated. The effects of substrate parameters on the phased arry antenna are considered. The scan blindness phenomenon due to the surface wave is observed and the input impedance bandwidth in the arbitrary scan plane is calculated.

  • PDF

The study on the estimation of diffuse field absorption coefficient by using normal incidence impedance (수직입사 임피던스를 이용한 난입사 흡음율 예측 연구)

  • 유승국;김영찬;김두훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.643-649
    • /
    • 1998
  • This paper is to compare the absorption coefficient with normal incidence waves and it with diffuse incidence waves of glass wool which the most used absorption material and multi layer fiber. The absorption coefficient with normal incidence waves is calculated by surface impedance that measured by using an acoustic tube. Based on this data, the absorption. coefficient with diffuse incidence waves is predicted and is compared with measured the absorption coefficient in reverberation room.

  • PDF

Probing of Steel Bar Location inside Concrete using Multi-electrode Array (다전극 배열을 이용한 콘크리트 매립 철근의 위치탐사)

  • 이형우;임홍철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.663-666
    • /
    • 2003
  • Using numerical analysis modeling of Multi-electrode Array that could be applied to the corrosion state measurement of a reinforcing steel bar in concrete, the steel bar location inside concrete can be probed by the investigation of the change of the measured impedance from concrete surface determined by the electrical impedance of interface between the steel bar and concrete, the electrical resistivity of concrete, the array of electrodes and the relative location and diameter of the steel bar.

  • PDF

Characteristics of Nano-crystalline TiO2 Dye-sensitized Solar Cells having Counter Electrodes with Different Preparing Process

  • Lee, Dong-Yoon;Koo, Bo-Kun;Kim, Hyun-Ju;Lee, Won-Jae;Song, Jae-Sung;Kim, Hee-Jae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.5
    • /
    • pp.238-242
    • /
    • 2005
  • The Pt counter electrode of a dye-sensitized solar cell (DSSC) plays a role in helping redox reaction of iodine ions in electrolyte, also, transferring electrons into electrolyte. In this case, it is expected that characteristics of Pt electrodes strongly depend on fabrication process and its surface condition. In this study, Pt electrodes were prepared by a electro-deposition and a RF magnetron sputtering. Electrochemical behavior of Pt electrodes was compared using cyclic-voltammetry and impedance spectroscopy. Surface morphology of Pt electrodes was investigated by FE-SEM and AFM. I-V characteristics of DSSC were measured and discussed in association with the surface properties of counter electrode. As a result, electrochemical properties of electro-deposited Pt electrode were superior to that of sputtered Pt electrode. This is likely that enlarged area of surface in electro-deposited Pt electrode in comparison with the case of sputtered Pt electrode playa role in enhancing such electrochemical properties.

Conduction Noise Absorption by Sn-O Thin Films on Microstrip Lines (마이크로스트립 선로에서 Sn-O 박막의 전도노이즈 흡수 특성)

  • Kim, Sung-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.329-333
    • /
    • 2011
  • To develop wide-band noise absorbers with a special design for low-frequency performance, this study proposes a tin oxide (Sn-O) thin films as the noise absorbing materials in a microstrip line. Sn-O thin films were deposited on polyimide film substrates by reactive sputtering of the Sn target under flowing $O_{2}$ gas, exhibiting a wide variation of surface resistance (in the range of $10^{0}-10^{5}{\Omega}$) depending on the oxygen partial pressure during deposition. The microstrip line with characteristic impedance of $50\Omega$ was used for the measurement of noise absorption by the Sn-O films. The reflection parameter $(S_{11})$ increased with a decrease of surface resistance due to an impedance mismatch at the boundary between the film and the microstrip line. Meanwhile, the transmission parameter $(S_{21})$ diminished with a decrease of surface resistance resulting from an Ohmic loss of the Sn-O films. The maximum noise absorption predicted at an optimum surface resistance of the Sn-O films was about $150{\Omega}$. For this film, greater power absorption is predicted in the lower frequency region (about 70% at 1 GHz) than in conventional magnetic sheets of high magnetic loss, indicating that Ohmic loss is the predominant loss parameter for the conduction noise absorption in the low frequency band.

A wireless impedance analyzer for automated tomographic mapping of a nanoengineered sensing skin

  • Pyo, Sukhoon;Loh, Kenneth J.;Hou, Tsung-Chin;Jarva, Erik;Lynch, Jerome P.
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.139-155
    • /
    • 2011
  • Polymeric thin-film assemblies whose bulk electrical conductivity and mechanical performance have been enhanced by single-walled carbon nanotubes are proposed for measuring strain and corrosion activity in metallic structural systems. Similar to the dermatological system found in animals, the proposed self-sensing thin-film assembly supports spatial strain and pH sensing via localized changes in electrical conductivity. Specifically, electrical impedance tomography (EIT) is used to create detailed mappings of film conductivity over its complete surface area using electrical measurements taken at the film boundary. While EIT is a powerful means of mapping the sensing skin's spatial response, it requires a data acquisition system capable of taking electrical impedance measurements on a large number of electrodes. A low-cost wireless impedance analyzer is proposed to fully automate EIT data acquisition. The key attribute of the device is a flexible sinusoidal waveform generator capable of generating regulated current signals with frequencies from near-DC to 20 MHz. Furthermore, a multiplexed sensing interface offers 32 addressable channels from which voltage measurements can be made. A wireless interface is included to eliminate the cumbersome wiring often required for data acquisition in a structure. The functionality of the wireless impedance analyzer is illustrated on an experimental setup with the system used for automated acquisition of electrical impedance measurements taken on the boundary of a bio-inspired sensing skin recently proposed for structural health monitoring.

Role of Some Benzohydrazide Derivatives as Corrosion Inhibitors for Carbon Steel in HCl Solution

  • Fouda, A.S.;Mohamed, M.T.;Soltan, M.R.
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.61-70
    • /
    • 2013
  • Corrosion inhibition of carbon steel in 2M HCl by some benzohydrazide derivatives (I-III) was studied using weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques at $30^{\circ}C$. Polarization studies showed that all the investigated compounds are of mixed type inhibitors. Temperature studies revealed a decrease in efficiency with rise in temperature and corrosion activation energies increased in the presence of the hydrazide derivatives, probably implying that physical adsorption of cationic species may be responsible for the observed inhibition behavior. Electrochemical impedance studies showed that the presence of benzohydrazide derivatives decreases the double layer capacitance and increases the charge transfer resistance. The adsorption of these compounds on carbon steel surface was found to obey Temkin's adsorption isotherm. Synergistic effects increased the inhibition efficiency in the presence of halide additives namely KI and KBr. An inhibition mechanism was proposed in terms of strongly adsorption of inhibitor molecules on carbon steel surface.

A GaAs Micromachined Millimeter-wave Lowpass Filter Using Microstrip Stepped-Impedance Hairpin Resonator

  • Cho Ju-Hyun;Yun Tae-Soon;Baek Tae-Jong;Ko Baek-Seok;Shin Dong-Hoon;Lee Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.2 s.5
    • /
    • pp.85-93
    • /
    • 2004
  • In this paper, microstrip stepped-impedance hairpin resonator (SIR) lowpass filter f.PF) by surface rnicromachining on GaAs substrate is sugsested. This filter has the advantages of compact side, easy fabrication, and sharp cutoff frequency response. The new SIR LPF shows the 3 dB passband of dc to 33 GHz, the insertion loss of 0.82 dB, and the return loss of better than 17 dB up to 25.57 GHz. This filter is useful for many microwave system applications.

  • PDF

A Compact Microstrip Patch Antenna Based on Metamaterials for Wi-Fi and WiMAX Applications

  • Nelaturi, Suman;Sarma, Nookala Venkata Satya Narasimha
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.182-187
    • /
    • 2018
  • A low profile asymmetrical fractal boundary patch antenna based on reactive impedance surface (RIS) and a mushroom unit cell (MUC) is proposed and studied for dual band operation. The sides of the square patch antenna are replaced with asymmetrical half circled fractal curves for circular polarization operation at patch mode band. The fractal patch antenna is loaded with MUC for dual band operation. The antenna radiation characteristics are investigated and illustrated with both simulated and experimental results in detail. The 10-dB return loss bandwidth are 8.48% (3.21-3.49 GHz) and 2.59% (2.30-2.36 GHz) at upper and lower resonance frequencies, respectively. The 3-dB axial ratio bandwidth is 4.26% (3.21-3.35 GHz). A close agreement between simulation data with experimental results is observed.

Study on the Mitigation of the Resonance due to the Power-Bus Structure using Periodic Metal-Strip Loaded Sheets

  • Kahng, Sung-Tek;Kim, Hyeong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.849-852
    • /
    • 2011
  • This paper investigates a method to tackle the resonance problems of the rectangular power-bus structure(PBS) using thin sheets loaded with periodic metal strips. The equivalent surface impedance of the proposed loading is calculated and involved in the expression of the impedance that accounts for in the PBS, in order to improve the resonance behavior of the original structure. The effects of the strips and the immediate surroundings are illustrated by a number of numerical experiments. Also the restrictions of the technique are addressed.