• Title/Summary/Keyword: Surface Hardness

Search Result 2,504, Processing Time 0.025 seconds

Study on the Wear Resistance of Gray Cast Iron in Laser Surface Hardening (레이저 표면경화처리된 회주철의 내마모특성에 관한 연구)

  • Park, K.W.;Han, Y.H.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.4
    • /
    • pp.271-280
    • /
    • 1996
  • This study has been performed to investigate into some effects of power density and traverse speed of laser beam on optical microstructure, hardness and wear characteristics of gray cast iron treated by laser surface hardening technique. Optical micrograph has shown that large martensite and a small amount of retained austenite appear in outermost surface layer with fine martensite in inside hardened zone. Hardness measurements have revealed that the range of maximun hardness value is $Hv=650{\pm}15$ and as the power density increases and the traverse speed decreses, the depth of hardened zone increases due to as increase in input power density. Wear test has exhibited that wear rasistance of laser surface hardened specimen is superier compared to that of untreated specimen under the condition of same load at a given sliding distance, showing that absorption results of an wxidized substance due to a heavy abrasion appear in untreated specimen. The amount of weight loss of laser surface hardened specimen with respect to sliding distance at a given load decreses with increasing traverse speed at a given power density and with increasing power density at a given traverse speed.

  • PDF

Fabrication of AZ31/CNT Surface Composite by Friction Stir Processing (마찰교반공정에 의한 AZ31/CNT 표면 복합재료 제조)

  • Kim, Jae-Yeon;Lee, Seung-Mi;Hwang, Jung-Woo;Byeon, Jai-Won
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.6
    • /
    • pp.315-321
    • /
    • 2015
  • Friction stir processing (FSP) was applied to fabricate AZ31/CNT (Carbon Nano Tube) surface composite for improvement of surface hardness of AZ31 Mg-based alloy. The effects of traverse speed of rotating tool and volume fraction of CNT (i.e., groove depth of 3 mm and 4 mm) on the soundness and hardness of the composite layer were investigated. Multi-walled CNTs were fully filled in a machined groove and stirring tool was rotated at the speed of 1400 rpm. Only under the tool traverse speed of 25 mm/min for the specimen with a groove depth of 3 mm, surface composite layer with no defect was successfully produced. Increased hardness of about 35% was observed in the composite layer.

Surface Reaction between Phosphate bonded $SiO_2$ Investment and Ti-Zr-(Cu) based Alloys for Dental castings (인산염계 $SiO_2$ 주형재와 치과주조용 Ti-Zr-(Cu)계 합금의 계면반응)

  • Joo, Kyu-Ji
    • Journal of Technologic Dentistry
    • /
    • v.27 no.1
    • /
    • pp.57-63
    • /
    • 2005
  • Experimental Ti-13%Zr and Ti-13%Zr-5%Cu alloys were made in an argon-arc melting furnace. The grade 2 CP Ti was used to control. To investigate the surface reaction layers produced by the reaction with mold materials and the influence of the reaction layers on the hardness of castings, A phosphate bonded $SiO_2$ base investment was used as mold material, and microstructure observation and hardness test were performed. The surface reaction layers of Ti-13%Zr and Ti-13%Zr-5%Cu alloys were thinner than that of CP Ti had a clearly multiple structure. A difference of the hardness between surface and inner of the Ti-13%Zr and Ti-13%Zr-5%Cu alloys became less than that of CP Ti. From the results, it was found that the Ti-Zr-(Cu) based alloys were possible to cast with $SiO_2$ base investment without the great changes of mechanical properties of the castings.

  • PDF

RF Magnetron Sputter로 증착 한 HfN 박막의 Plasma Power 변화에 따른 Nano-electroribology 특성 변화 연구

  • Park, Myeong-Jun;Kim, Seong-Jun;Kim, Su-In;Lee, Chang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.354.2-354.2
    • /
    • 2014
  • 최근 반도체 산업의 발전에 따라 반도체 소자 내 배선재료로 사용되던 Aluminium (Al)의 대체물로 Copper (Cu)가 사용되고 있다. Cu는 Al보다 우수한 전도성과 비용이 저렴하다는 장점이 있으나 반도체 기판과의 확산으로 이를 해결해야만 하는 문제점이 있다. 이는 Si와 Cu사이에 확산방지막을 사용하여 해결할 수 있는데 Hafnium Nitride (HfN) 박막은 다른 물질과 비교해 고온에서의 안정성과 낮은 비저항을 가지고 있어 주목을 받고 있다. 본 연구에서는 rf magnetron sputter 방법으로 박막 증착 시에 인가하는 rf power가 박막의 표면 특성에 어떠한 영향을 미치는지 nano-indenter를 사용해 surface hardness와 elastic modulus의 변화를 중심으로 알아보았다. 시료는 rf magnetron sputter로 증착 시 인가하는 plasma power를 60W와 80W로 달리하여 증착하였다. 증착가스는 Ar과 $N_2$를 조절하여 사용하였고 총 유량을 40 sccm 으로 고정하였으며, 이 때 압력은 3mTorr로 유지하였다. 실험결과 plasma power를 80W로 인가하여 증착한 시료의 surface hardness (18.48 GPa)가 60W로 증착한 시료의 surface hardness (12.03 GPa)보다 큰 값을 나타내었다. 이와 마찬가지로 80W로 증착한 시료의 elastic modulus(187.16 GPa)도 60W로 증착한 시료의 탄성계수 (141.15 GPa)보다 큰 값을 나타내었다. 이는 증착 시 인가하는 plasma power의 크기가 증가하면 박막표면에 compressive stress가 생성되어 박막의 surface hardness와 elastic modulus가 상대적으로 높게 측정되는 것으로 생각된다.

  • PDF

Deposition Of $TiB_2$ Films by High Density Plasma Assisted Chemical Vapor Deposition (고밀도 플라즈마 화학 증착 장치를 이용한 $TiB_2$ 박막 제조)

  • Lee S. H.;Nam K. H.;Hong S. C.;Lee J. J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.2
    • /
    • pp.60-64
    • /
    • 2005
  • The ICP-CVD (inductively coupled plasma chemical vapor deposition) process was applied to the deposition of $TiB_2$ films. For plasma generation, 13.56 MHz r.f. power was supplied to 2-turn Cu coil placed inside chamber. And the gas mixture of $TiCl_4,\;BCl_3,\;H_2$ and Ar was used for $TiB_2$ deposition. $TiB_2$ films with high hardness (<40 GPa) were obtained at extremely low deposition temperature $(250^{\circ}C)$, and the films hardness increased with ICP power and gas flow ratio of $TiCl_4/BCl_3$. The film structure was changed from (100) preferred orientation to random orientation with increasing RF power. It is supposed that the enhanced hardness of films was caused by a strong Ti-B chemical bonding of stoichiometric $TiB_2$ films and film densification induced by high density plasma.

Comparative Study on Effect of the Surface Characteristics of the SKH51 and SKD11 Steels with Deposition Times by AIP-TiN Coating (AIP-TiN 코팅에서 증착시간이 SKH51과 SKD11 강의 표면특성에 미치는 영향에 관한 비교 연구)

  • Kim, Hae-Ji;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.1
    • /
    • pp.67-74
    • /
    • 2008
  • In this paper, the surface characteristics of the AIP-TiN coated of the SKH51 and SKD11 steels under various deposition times are presented with emphasis on the comparison of the two materials. The micro-particle, the surface roughness, the micro-hardness, the coated layer thickness, the atomic distribution of Ti, N and Fe elements and the adhesion are measured for various deposition times. It has been shown that the micro-particle, the surface roughness, the coated layer thickness and the atomic distribution of Ti, N and Fe elements are similar for the two cases regardless of the test deposition time from 10 to 180 minutes. However, it has been shown that the micro-hardness and the adhesion of the SKH51 steel are higher than the SKD11 steel, indicating that they are much affected by the hardness of the material to be coated.

  • PDF

An Experimental Study on the Galling Characteristics of valve Seat Materials for Water Works (밸브시트 재료의 갤링 특성에 관한 실험적 연구)

  • 박성준;김영태;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.100-108
    • /
    • 2004
  • Contamination of environment induces the shortage of drinkables. In this trend, the leakage of water that occurs by breakage or erosion of rubber valve seats is serious problem. Rubber is apt to cause breakage between two materials when they contact with each other. The possible way to avoid leakage of water by damage and breakdown of rubber is to replace that with metal. Because of this reason, nowadays, rubber is being substituted with metal as valve seat materials for water works. In tribology, a severe from of wear is characterized by local, macroscopic material transfer, removal, or formation of surface protrusions when two solid surfaces experience relative sliding under load. One of the major problems in sliding of metals is galling due to bad surface quality. Experimentally, there are various elements which influence on incipient galling, such as hardness, surface roughness, temperature, load, velocity and external environments. This paper is aimed at verifying the galling tendencies according to hardness, surface roughness, load and velocity and showing how much effect the factors have on the galling tendencies.

Characteristics of Surface Hardening by Laser Power Control in Real Time of Spheroidal Graphite Cast Iron (실시간 출력 제어를 통한 구상흑연 주철의 레이저 표면경화 특성)

  • Kim, Jongdo;Song, Mookeun
    • Laser Solutions
    • /
    • v.18 no.2
    • /
    • pp.1-4
    • /
    • 2015
  • This study is related to the surface hardening treatment to spheroidal graphite cast iron for die by using high power diode laser. Laser device used in this experiment is capable of real-time laser power control. This is because the infrared temperature sensor (two color pyrometer) attached to the optical system measures the surface temperature of specimen and adjusts the laser power in real time. The surface treatment was carried out with the change of heat treatment temperature at the beam travel speed 3 mm/sec. Hardened width and depth was measured and hardened zone was analyzed by micro vickers hardness test in order to research the optimum condition of heat treatment. The changes in microstructure of the hardened zone also was examined. As a result of hardness measurement and observations on microstructure of hardened zone, hardness increased over three times as compared with base metal because the martensite was formed on the matrix structure.

The Effect of Heat Treatment on the Thermal Expansion Behavior of Electroformed Nano-crystalline Fe-42 wt%Ni Alloy

  • Lee, Minsu;Han, Yunho;Yim, Tai Hong
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.293-296
    • /
    • 2014
  • Fe-Ni has been of great interest because it is known as one of low thermal expansion alloys as various application areas. This alloy was fabricated by electroforming process, and effect of heat treatment on thermal expansion and hardness was investigated. Nano-crystalline structure of 13.3 - 63.5 nm in size was observed in the as-deposited alloy. To investigate the effect of heat treatment on grain growth and mechanical/thermal properties, we conducted hardness and coefficient of thermal expansion (CTE). From this, we confirmed these properties were varied by heat treatment. In this nano-crystalline alloy, we could observe abnormal behavior in thermal expansion between $350-400^{\circ}C$. Additionally, an abrupt change in hardness has also been observed. However, once the grains grow up to micro-sized the mechanical and thermal properties mentioned above were stabilized similar to those of bulk alloys due to heat treatment.

Surface and Physical Properties of Polymer Insulator Coated with Diamond-Like Carbon Thin Film (DLC 박막이 코팅된 폴리머 애자의 표면 및 물리적 특성)

  • Kim, Young Gon;Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.16-20
    • /
    • 2021
  • In this study, we tried finding new materials to improve the stain resistance properties of polymer insulating materials. Using the filtered vacuum arc source (FVAS) with a graphite target source, DLC thin films were deposited on silicon and polymer insulator substrates depending on their thickness to confirm the surface properties, physical properties, and structural properties of the thin films. Subsequently, the possibility of using a DLC thin film as a protective coating material for polymer insulators was confirmed. DLC thin films manufactured in accordance with the thickness of various thin films exhibited a very smooth and uniform surface. As the thin film thickness increased, the surface roughness value decreased and the contact angle value increased. In addition, the elastic modulus and hardness of the DLC thin film slightly increased, and the maximum values of elastic modulus and hardness were 214.5 GPa and 19.8 GPa, respectively. In addition, the DLC thin film showed a very low leakage current value, thereby exhibiting electrical insulation properties.