• 제목/요약/키워드: Surface Flashover Voltage

검색결과 83건 처리시간 0.016초

154 kV급 고온초전도 케이블 및 단말의 전기절연 설계 (Electrical Insulation Design of a 154 kV Class HTS Cable and Termination)

  • 곽동순;천현권;최재형;김해종;조전욱;김상현
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권1호
    • /
    • pp.61-66
    • /
    • 2007
  • A transmission class high-temperature superconducting(HTS) power cable system is being developed in Korea. For insulation design of this cable the grading method of insulating paper is proposed. Two kinds of laminated polypropylene paper that has different thickness has been used as the electrical insulation material. The use of graded insulation gives improved mechanical bending properties of the cable. In a HTS cable technology the terminations are important components. A HTS cable termination is energized with the line-to-ground voltage between the coaxial center and outer surrounding conductors. in the axial direction. There is also a temperature difference from ambient to about 77 K. For insulation design of this termination, glass fiber reinforced plastic(GFRP) was used as the insulation material of the termination body, and the capacitance-graded method is proposed. This paper will report on the experimental investigations on impulse breakdown and surface flashover characteristics of the insulation materials for insulation design of a transmission class HTS power cable and termination. Based on these experimental data, the electrical insulation design of a transmission class HTS power cable and termination was carried out.

Application of Nano Coating to ACSR conductor for the Protection of Transmission lines against Solar Storms, Surface Flashovers, Corona and Over voltages

  • Selvaraj, D. Edison;Mohanadasse, K.;Sugumaran, C. Pugazhendhi;Vijayaraj, R.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2070-2076
    • /
    • 2015
  • Nano composite materials were multi-constituent combinations of nano dimensional phases with distinct differences in structure, chemistry and properties. Nano particles were less likely to create large stress concentrations and thereby can avoid the compromise of the material ductility while improve other mechanical properties. Corona discharge was an electrical discharge. The ionization of a fluid surrounding a conductor was electrically energized. This discharge would occur when the strength of the electric field around the conductor was high enough to form a conductive region, but not high enough to cause electrical breakdown or arcing to nearby objects. This paper shows all the studies done on the preparation of nano fillers. Special attention has given to the ACSR transmission line conductor, TiO2 nano fillers and also to the evaluation of corona resistance on dielectric materials discussed in detail. The measurement of the dielectric properties of the nano fillers and the parameters influencing them were also discussed in the paper. Corona discharge test reveals that in 0%N ACSR sample corona loss was directly proportional to the applied line voltage. No significant change in corona loss between 0%N and 1%N. When TiO2 nano filler concentration was increased up to 10%N fine decrement in corona loss was found when compared to base ACSR conductor, corona loss was decreased by 40.67% in 10%N ACSR sample. It was also found from the surface conditions test that inorganic TiO2 nano filler increases the key parameters like tensile strength and erosion depth.

Evaluation of Material Characteristics of Suspension-Type Porcelain Insulators for 154 KV Power Transmission Lines

  • Choi, In-Hyuk;Park, Joon-Young;Kim, Tae-gyun;Yoon, Yong-Beum;Yi, Junsin
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권4호
    • /
    • pp.207-210
    • /
    • 2017
  • The suspension arrangement of insulators provides flexibility and assists in power transmission in transmission lines. The performance of the insulator string is strongly influenced by the environmental conditions to which it is exposed, its shape and the inherent material properties of suspension-type insulators. The suspension-type insulators are mostly made from glass, porcelain and ceramic material due to their high resistivity. Irregularity in charge distribution throughout the porcelain insulator may lead to accelerated aging and electrical breakdown. A very high and steep lightning impulse voltage may also cause breakdown of suspension-type insulators. We investigated various material characteristics such as alumina addition, surface morphology, x-ray diffraction pattern and relative density of suspension porcelain insulators manufactured in 1989 (36,000 lbs.), 1995 (36,000 lbs.) and 2001 (36,000 lbs.) by the KRI Company for use in 154 kV high power transmission lines. We compared the material characteristics of these porcelain insulators with that of the top-of-the-line porcelain insulators (36,000 lbs.) manufactured by the NGK Company in 2000. These suspension-type porcelain insulators were exposed to arc and flashover tests to examine their electrical and mechanical strength. It was noted that alumina addition (17 wt.%) for K-2001 was one of the major contributors to the enhancement of the performance of the porcelain insulators and to their ability to withstand very high current generation during the arc test. The porcelain insulators manufactured during 2001 also showed the highest relative density of 95.8% as compared to the other insulators manufactured in 1989 and 1995 respectively 94.2% and 91.5%. We also discuss reports of various failure modes of suspension-type porcelain insulators.