• 제목/요약/키워드: Surface EMG stationarity

검색결과 2건 처리시간 0.016초

표면근전도 신호의 정상성 검사를 위한 Run-검증과 RA-검증의 정확도 분석 (An Accuracy Analysis of Run-test and RA(Reverse Arrangement)-test for Assessing Surface EMG Signal Stationarity)

  • 이진
    • 전기학회논문지
    • /
    • 제63권2호
    • /
    • pp.291-296
    • /
    • 2014
  • Most of the statistical signal analysis processed in the time domain and the frequency domain are based on the assumption that the signal is weakly stationary(wide sense stationary). Therefore, it is necessary to know whether the surface EMG signals processed in the statistical basis satisfy the condition of weak stationarity. The purpose of this study is to analyze the accuracy of the Run-test, modified Run-test, RA(reverse arrangement)-test, and modified RA-test for assessing surface EMG signal stationarity. Six stationary and three non-stationary signals were simulated by using sine wave, AR(autoregressive) modeling, and real surface EMG. The simulated signals were tested for stationarity using nine different methods of Run-test and RA-test. The results showed that the modified Run-test method2 (mRT2) classified exactly the surface EMG signals by stationarity with 100% accuracy. This finding indicates that the mRT2 may be the best way for assessing stationarity in surface EMG signals.

표면근전도 신호의 정상성 검사를 위한 수정된 Run-검증과 RA-검증에 최적인 신호분할 길이 (Optimal Signal Segment Length for Modified Run-test and RA(reverse arrangement)-test for Assessing Surface EMG Signal Stationarity)

  • 이진
    • 전기학회논문지
    • /
    • 제63권8호
    • /
    • pp.1128-1133
    • /
    • 2014
  • Most of the statistical signal analysis processed in the time domain and the frequency domain are based on the assumption that the signal is weakly stationary(wide sense stationary). Therefore, it is necessary to know whether the surface EMG signals processed in the statistical basis satisfy the condition of the weak stationarity. The purpose of this study is to find optimal segment length of surface EMG signal for assessing stationarity with the modified Run-test and RA-test. Ten stationary surface EMG signals were simulated by AR(autoregressive) modeling, and ten real surface EMG signals were recorded from biceps brachii muscle and then modified to have non-stationary structures. In condition of varying segment length from 20ms to 100ms, stationarity of the signals was tested by using six different methods of modified Run-test and RA-test. The results indicate that the optimal segment length for the surface EMG is 30ms~35ms, and the best way for assessing surface EMG signal stationarity is the modified Run-test (Run2) method using this optimal length.