• Title/Summary/Keyword: Surface Durability

Search Result 1,034, Processing Time 0.021 seconds

A Study on the Leakage Protection with Polypropylene Mat in Irrigation Canal (Polypropylene Mat에 의(依)한 용수로(用水路)의 누수방지(漏水防止)에 관(關)한 연구(硏究))

  • Kang, Sin-Up;Kang, Yea-Mook;Cho, Seung-Seup
    • Korean Journal of Agricultural Science
    • /
    • v.6 no.2
    • /
    • pp.166-184
    • /
    • 1979
  • In order to prevent the water loss in the irrigation canal constructed on the sandy gravel layer or on the other highly permeable ground layer, lining has been practiced. Many studies have been done so far on the lining method to prevent the water loss in the irrigation canal and recently studies on the lining with plastic film or polyethylene film were also reported. However, the plastic film or polyethylene film has low strength and is liable to break, and water loss from pin hole caused by contacting with sand or gravel is highly predicted. This study was then conducted to find proper lining and buring method in canal construction of polypropylene mat after coated with vinyl, as one way to overcome the shortcoming frequently observed when plastic or usual polyehtylene film were used. Eventhough rather longer periods of experiments are needed to attain reliable and accurate results on the variation of durability, the durability of asphalt coated area, or on the damage due to freeze after burial or exposure of polypropylene mat, the experiemental results obtained during one year of period are summarized as follows: 1. The curvature at the area between canal bottom and side slope had increased stability and saved consruction cost. The relationship among the variation of curvature, the reduction of polypropylene mat and the reduced amount of soil cutting at each side slope was presented in Fig. 7 through 9. 2. The depth of covering material to protect polypropylene mat was desired to be over 30cm, considering the water depth, side slope, canal cleaning practices, traffic, or back pressure of irrigation period. 3. In order to increase the canal stability and to prevent slope erosion, sandy soil was required, to be placed under ground, and coarse gravel should cover the surface area of canal. 4. The studies on the stability of side slope in the canal should consider the passive area on the bottom and the slope should be about 1 to 2, considering the slope stability, allowable velocity and tractive force. 5. When compared with earth lining, the lining with polypropylene mat coated with vinyl was responsible to save 28% and 37% of canal lining cost, when the soil carrying distances were 500 and 700m. respectively. 6. The water interception was almost completely attained when the polypropylene mat coated with vinyl was used for lining. But further studies were assumed to be necessary for the use of asphalt since the strength of polypropylene mat connected with asphalt will vary with duration.

  • PDF

Removal of ${\alpha}$-Gal Epitopes in Aortic Valve and Pericardium of Pig Using Green Coffee Bean ${\alpha}$-Galactosidase (돼지의 대동맥 판막 및 심낭에서 녹색콩 알파-갈락토시다아제를 이용한 알파-갈 항원결정인자 제거)

  • Park, Seong-Sik;Kim, Woong-Han;Kim, Kyung-Hwan;Lee, Chang-Ha;Choi, Sun-Young;Lee, Cheul;Oh, Sam-Sae;Kim, Kwan-Chang;Kim, Yong-Jin
    • Journal of Chest Surgery
    • /
    • v.41 no.1
    • /
    • pp.12-24
    • /
    • 2008
  • Background: It is currently thought that tissue valve degeneration is related to an animal's immune response, which is mainly due to cell surface ${\alpha}$-Gal epitopes. Cell surface ${\alpha}$-Gal epitopes are known to be degraded by the enzyme called green coffee bean ${\alpha}$-Galactosidase. It is also well known that ${\alpha}$-Gal epitopes are immunologically stained by Griffonia Simplicifolia isolectin type B4. We know that many commercially available tissue valves are made of aortic valves and pericardial tissue of pig. So, we investigated whether ${\alpha}$-Gal epitopes of the aortic valve and pericardial tissue of a pig can be removed by green coffee bean ${\alpha}$-Galactosidase, and we did so by comparing immunologic staining of the tissues before and after the enzyme treatment. Material and method: After treating fresh porcine aortic valve and pericardial tissue with green coffee bean ${\alpha}$-Galactosidase at concentrations of 0.5 unit/mL, 1.0 unit/mL, 2.0 unit/mL, respectively, under the condition of pH 6.5, temperature. $4^{\circ}C$ and 24 hours of incubation, each sample was stained with Griffonia Simplicifolia isolectin type B4 immunpfluorescent labeling. We then examined whether the ${\alpha}$-Gal epitopes were reduced or abolished in each consecutive. concentration of green coffee bean ${\alpha}$-Galactosidase by comparing the degree of the Griffonia Simplicifolia isolectin B4 staining in each sample. Result: In the pig aortic valve tissue, a 1.0 unit/mL concentration of green coffee bean ${\alpha}$-Galactosidase at pH 6.5, $4^{\circ}C$ and reaction for 24 hours was enough for complete removal of ${\alpha}$-Gal epitopes from the cell sur face on the immunostaining with Griffonia Simplicifolia isolectin B4. On the other hand, more ${\alpha}$-Gal epitopes were present in the pig pericardial tissue on Griffonia Simplicifolia isolectin B4 staining before the enzyme treatment, and 1.0 unit/mL of galactosidase was not sufficient for complete removal of ${\alpha}$-Gal from the tissue. 2.0 units/mL of green coffee bean ${\alpha}$-Galactosidase was needed to completely remove the ${\alpha}$-Gal epitopes from the pericardial tissue on immunostaining. Conclusion: The ${\alpha}$-Gal epitopes of the pig's aortic valve and pericardial tissue were successfully stained with Griffonia Simplicifolia isolectin B4. We could remove nearly all the ${\alpha}$-Gal epitopes using green coffee bean ${\alpha}$-Galactosidase at the concentration of 1.0 unit/mL in the aortic valve. Of pig, and 2.0 unit/mL was need to nearly completely remove all the ${\alpha}$-Gal epitopes in the pericardial tissue of pig under the condition of pH 6.5, $4^{\circ}C$ and 24 hours of reaction time. In the near future, removal of ${\alpha}$-Gal epitapes in the pig's aortic valve and pericardial tissue will become a powerful tool for the improvement of the tissue valve durability. It needs to be determined if ${\alpha}$-galactosidase treated pig tissue is immune to human anti-Gal antibody or anit-Gal mooclonal antibodies.

Primer Evaluation for the Detection of Toxigenic Microcystis by PCR (독소 생성 Microcystis 검출을 위한 PCR primer의 평가)

  • 이현경;김준호;유순애;안태석;김치경;이동훈
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.166-174
    • /
    • 2003
  • Microcystin produced by cyanobacteria in surface waters, such as eutrophic lake and river, is a kind of serious environmental problems due to its toxicity to human and wild animals. Microcystin is synthesized nonribosomally by the large modular multi-functional enzyme complex known as microcystin synthetase encoded by the mcy gene cluster. Amplification of mcy genes by PCR from cultures and environmental samples is a simple and efficient method to detect the toxigenic Microcystis. In order to evaluate primers designed to detect toxic microcystin-producing strains, 17 cyanobacterial strains and 20 environmental samples were examined by PCR with 7 pairs of primers. Some microcystin-producing cyanobacteria were not detected with FAA-RAA, TOX4F-TOX4R and FP-RP primers. The fragment of unexpected size was amplified with NSZW2-NSZW1 primers in Microcystis strains isolated from the lakes in Korea. TOX1P-TOX1F primers failed in amplification of toxin-producing strains. Only MSF-MSR and TOX2P- TOX2F primers amplified the fragments of mcy genes from 11 strains of microcystin-producing Microcystis. The water samples taken from 20 lakes in Korea were analyzed by PCR using each of the primers. In all the water samples, cyanobacteria capable of producing microcystin were detected by the PCR with TOX2P-TOX2F primers. These results indicate that TOX2P-TOX2F primers are better than the other primers for detection of microcystin-producing Microcystis strains in Korea. The nucleotide sequences of mcy gene in Microcystis aeruginosa NIER10010 suggest genetic diversity of Korean isolates.

Preparation of Halloysite-Based Tubular Media for Enhanced Methylene Blue Adsorption (메틸렌 블루 흡착능 향상을 위한 할로이사이트 기반 튜브형 담체 연구)

  • Jeon, Junyeong;Cho, Yebin;Kim, Jongwook;Shin, Seung Gu;Jeon, Jong-Rok;Lee, Younki
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.359-366
    • /
    • 2021
  • Halloysite nanotubes (HNTs), the multiwalled clay mineral with the composition of Al2Si2O5(OH)4·nH2O, have been highlighted as a low-cost adsorbent for the removal of dyes from wastewater. Although a powder of halloysite presents a high specific surface area, forming media are significantly considered due to sludge-clogging induced by the water-bound agglomeration. However, higher firing temperature to achieve the structural durability of the media and lower utilization rate due to longer penetration depth into the media act as hurdles to increase the dye-adsorption capacity. In this work, the retention of the adsorption capacity of halloysite was evaluated with methylene blue solution after the heat treatment at 750 ℃. In order to improve the utilization rate, tubular media were fabricated by extrusion. The images taken by transmission electron microscopy show that HNTs present excellent structural stability under heat treatment. The HNTs also provide superb capacity retention for MB adsorption (93%, 18.5 mg g-1), while the diatomite and Magnesol® XL show 22% (7.65 mg g-1) and 6% (11.7 mg g-1), respectively. Additionally, compositing with lignin enhances adsorption capacity, and the heat treatment under the hydrogen atmosphere accelerates the adsorption in the early stage. Compared to the rod-type, the tubular halloysite media rapidly increases methylene blue adsorption capacity.