• Title/Summary/Keyword: Surface Deformation

Search Result 1,967, Processing Time 0.037 seconds

Three dimensional deformation of dry-stored complete denture base at room temperature

  • Lim, Seo-Ryeon;Lee, Joon-Seok
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.4
    • /
    • pp.296-303
    • /
    • 2016
  • PURPOSE. The aim of this study was to evaluate whether there is any typical deformation pattern existing in complete denture when it was dried by using the 3D scanner and surface matching program. MATERIALS AND METHODS. A total of 28 denture bases were fabricated with heat curing acrylic resin (each 14 upper and lower denture bases), and 14 denture bases (each 7 upper and lower denture bases) were stored in the water bottle (water stored), and another 14 denture bases were stored in the air (dry stored). Each specimen was scanned at $1^{st}$ day after deflasking, $14^{th}$ day after deflasking, and $28^{th}$ day after deflasking, and digitalized. Three dimensional deformation patterns were acquired by comparison of the data within storage group using surface matching program. For evaluating differences between groups, these data were compared statisticallyusing Kruskal Wallis and Mann Whitney-U test (${\alpha}$=.05). RESULTS. When evaluating 3D deformation of denture base, obvious deformations were not found in maxillary and mandibular water storage group. However, in dry stored group, typical deformation pattern was detected as storage time passes. It occurred mostly in first two weeks. Major deformations were found in the bilateral posterior area in both maxillary and mandibular group. In maxillary dry stored group, a statistical significance was found. CONCLUSION. It was proved that in both upper and lower denture bases, dry storage caused more dimensional deformation than water storage with typical pattern.

Improved Optimal Approximated Unfolding Algorithm of a Curved Shell Plate with Automatic Mesh Generation (자동 메쉬 생성을 적용한 향상된 자유 곡면의 최적 근사 전개 알고리즘)

  • Ryu C.H.;Shin J.G.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.3
    • /
    • pp.157-163
    • /
    • 2006
  • Surfaces of many engineering structures, especially, those of ships are commonly made out of either single- or double-curved surfaces to meet functional requirements. The first step in the fabrication process of a three-dimensional design surface is unfolding or flattening the surface, otherwise known as planar development, so that manufacturers can determine the initial flat plate which is required to form the design shape. In this paper, an algorithm for optimal approximated development of a general curved surface, including both single- and double-curved surfaces, is established by minimizing the strain energy of deformation from its planar development to the design surface. The unfolding process is formulated into a constrained nonlinear programming problem, based on the deformation theory and finite element. Constraints are subjected to the characteristics of the fabrication method. And the design surface, or the curved shell plate is subdivided by automatic mesh generation.

High-quality Realtime Rendering of Metallic Surface with Microfacet Distribution Function Deformation (미세면 분포 함수 변형을 통한 고품질 실시간 금속 렌더링)

  • Kang, Young-Min
    • Journal of Korea Game Society
    • /
    • v.10 no.6
    • /
    • pp.169-178
    • /
    • 2010
  • An effective method to render realistic metallic surface in realtime application is proposed. The proposed method perturbs the normal vectors on the metallic surface to represent small scratches. In general, bump map or normal map method is used to gnerate normal vector perturbation. However, those methods do not show plausible light scattering when applied to anisotropic reflection surface. In order to express metallic surface reflectance, MDF-based BRDF is generally employed. Therefore, the simple normal perturbation does not produce satisfactory metal rendering results. The proposed method employs not only normal perturbation but also deformation of the microfacet distribution function(MDF) that determines the reflectance properties on the surface. The MDF deformation increases the realism of metal rendering. The proposed method can be easily implemented with GPU programs, and works well in realtime environments.

Sliding Wear Behavior of Pure Metal, Fe and Cu Having a Cubic Crystal System (입방정계 순 금속 Fe, Cu의 미끄럼 마멸 거동)

  • Yi, S.K.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.357-362
    • /
    • 2010
  • Dry sliding wear behavior of pure Fe and Cu which have BCC and FCC crystal structure, respectively, was investigated. The wear characteristics of the pure metals with different crystal structure were compared. Dry sliding wear tests were carried out using a pin-on-disk wear tester at various loads under the constant sliding speed condition of 0.15 m/s against a silica ball at room temperature. Sliding distance was fixed as 600 m for all wear tests. Wear rate of a specimen was calculated by dividing the weight loss of the specimen after the test by the specific gravity and sliding distance. Worn surfaces and wear debris were analyzed by SEM. The wear of both pure Fe and Cu proceeded with surface deformation, resulting in similar wear rates despite of their structure difference under the current test conditions. Wear rates of both metals were low if the surface deformation due to wear forms thick surface-deformation layer that is strain hardened beneath the wearing surface. The pure Cu specimens showed a lot of oxides on the worn surface when tested at low loads less than 5 N, which resulted in very low wear rate.

Implementation of process and surface inspection system for semiconductor wafer stress measurement (반도체 웨이퍼의 스트레스 측정을 위한 공정 및 표면 검사시스템 구현)

  • Cho, Tae-Ik;Oh, Do-Chang
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.11-16
    • /
    • 2008
  • In this paper, firstly we made of the rapid thermal processor equipment with the specifically useful structure to measure wafer stress. Secondly we made of the laser interferometry to inspect the wafer surface curvature based on the large deformation theory. And then the wafer surface fringe image was obtained by experiment, and the full field stress distribution of wafer surface comes into view by signal processing with thining and pitch mapping. After wafer was ground by 1mm and polished from the back side to get easily deformation, and it was heated by three to four times thermal treatments at about 1000 degree temperature. Finally the severe deformation between wafer before and after the heat treatment was shown.

Numerical Analysis on the Deformation of Free Surface of Magnetic Fluid (자성유체의 자유표면의 변형에 관한 수치해석)

  • Nam S.W.;Kamlyama S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.132-137
    • /
    • 1995
  • Numerical analysis is conducted on the deformation of free surface of magnetic fluid. Steady magnetic fields are induced by a circular current loop. Governing equations of magnetic fields are solved by using the concept of vector potential. The free surface of magnetic fluid is formed by the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body force. The deformations of free surface of magnetic fluid are qualitatively clarified. And, the patterns of steady non-uniform magnetic fields induced by a circular current loop are quantitatively presented.

  • PDF

Effect of Deformation Energy on the Indentation Induced Etch Hillock (변형 에너지가 나노압입 유기 Hillock 현상에 미치는 영향)

  • Kim H. I.;Youn S. W.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.225-228
    • /
    • 2005
  • The purpose of this study is to investigate effects of the plastic/elastic deformation energy on wet etching characterization on the surface of material by using the nanoindentation and HF wet etching technique. Indents were made on the surface of Pyrex 7740 glass by the hyperfine indentation process with a Berkovich diamond indenter, and they were etched in $50\;wt\%$ HF solution. After etching process, convex structure was obtained due to the deformation-induced hillock phenomena. In this study, effects of indentation process parameters (normal load, loading rate) on the morphologies of the indented surfaces after isotopic etching were investigated from an angle of deformation energies.

  • PDF

Optimal Approximated Development of General Curved Plates Based on Deformation Theory (변형 이론을 기반으로한 곡면의 최적 근사 전개)

  • 유철호;신종계
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.3
    • /
    • pp.190-201
    • /
    • 2002
  • Surfaces of many engineering structures, specially, those of ships and airplanes are commonly fabricated as doubly curved shapes as well as singly curved surfaces to fulfill functional requirements. Given a three dimensional design surface, the first step in the fabrication process is unfolding or planar development of this surfaces into a planar shape so that the manufacturer can determine the initial shape of the flat plate. Also a good planar development enables the manufacturer to estimate the strain distribution required to form the design shape. In this paper, an algorithm for optimal approximated development of a general curved surface, including both singly and doubly curved surface is developed in the sense that the strain energy from its planar development to the design surface is minimized, subjected to some constraints. The development process is formulated into a constrained nonlinear programming problem, which is on basis of deformation theory and finite element. Constraints are subjected to characteristics of the fabrication method. Some examples on typical surfaces and the practical ship surfaces show the effectiveness of this algorithm.

Nonlinear thermal buckling behavior of functionally graded plates using an efficient sinusoidal shear deformation theory

  • Bouiadjra, Rabbab Bachir;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.547-567
    • /
    • 2013
  • Nonlinear behavior of functionally graded material (FGM) plates under thermal loads is investigated here using an efficient sinusoidal shear deformation theory. The displacement field is chosen based on assumptions that the in-plane and transverse displacements consist of bending and shear components, and the shear components of in-plane displacements give rise to the sinusoidal distribution of transverse shear stress through the thickness in such a way that shear stresses vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Unlike the conventional sinusoidal shear deformation theory, the proposed efficient sinusoidal shear deformation theory contains only four unknowns. The material is graded in the thickness direction and a simple power law based on the rule of mixture is used to estimate the effective material properties. The neutral surface position for such FGM plates is determined and the sinusoidal shear deformation theory based on exact neutral surface position is employed here. There is no stretching-bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations and boundary conditions of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. The non-linear strain-displacement relations are also taken into consideration. The thermal loads are assumed as uniform, linear and non-linear temperature rises across the thickness direction. Closed-form solutions are presented to calculate the critical buckling temperature, which are useful for engineers in design. Numerical results are presented for the present efficient sinusoidal shear deformation theory, demonstrating its importance and accuracy in comparison to other theories.

Warping thermal deformation constraint for optimization of a blade stiffened composite panel using GA

  • Todoroki, Akira;Ozawa, Takumi
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.334-340
    • /
    • 2013
  • This paper deals with the optimization of blade stiffened composite panels. The main objective of the research is to make response surfaces for the constraints. The response surface for warping thermal deformation was previously made for a fixed dimension composite structure. In this study, the dimensions of the blade stiffener were treated as design variables. This meant that a new response surface technique was required for the constraints. For the response surfaces, the lamination parameters, linear thermal expansions and dimensions of the structures were used as variables. A genetic algorithm was adopted as an optimizer, and an optimal result, which satisfied two constraints, was obtained. As a result, a new response surface was obtained, for predicting warping thermal deformation.