• Title/Summary/Keyword: Surface Construction

Search Result 3,111, Processing Time 0.028 seconds

A study on contaminant reduction performance of the adsorption protector for construction surface (흡착보양재의 오염물질방출 저감성능에 관한 연구)

  • Heo, Jung-Yong;Choi, Chang-Ho;Lee, Yun-Gyu
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.714-719
    • /
    • 2008
  • In a domestic construction field, after floor is constructed, protector for construction surface is set up to prevent the surface of the floor being scratched and polluted. However, the problem is that contaminants discharged with the removal of the protector for construction surface exert a bad influence for the indoor air quality. In the research, it tested to the contaminant reduction performance of the adsorption protector for construction surface using powder of charcoal by the alternative proposal of such protectors for construction surface

  • PDF

Case Study of Concrete Surface Design and Construction Method for Freeform Building Based on BIM -Focused on Tri-Bowl, Korea-

  • Ryu, Han-Guk;Kim, Sung-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.347-357
    • /
    • 2012
  • While it is generally possible to install curved panels manufactured in a factory within the permitted error range on an irregular surface frame of concrete or steel, it is difficult and expensive. Freeform architecture is thus designed and constructed differently from formal buildings. In order to more easily and inexpensively actualize freeform architecture, Building Information Modeling (hereinafter referred to as BIM) has recently been applied in the construction industry. However, the related research and case analyses are not sufficient to identify the implications and contributions of freeform buildings in future similar projects. Therefore, this research will study design and construction methods for freeform surfaces, particular the concrete surface frame of freeform buildings based on BIM, focused on the Tri-Bowl project. This study attempts to analyze the pros and cons of each method for the concrete surface frame of the Tri-Bowl, and then presents the lessons learned and implications related to the design and construction process of the freeform architecture. Several implications for design and construction of concrete surface frame of the freeform building, the Tri-Bowl, are found. The first is that manufacturing and installation of a curved concrete frame is precisely performed based on the exact numerical values of materials and installation made using BIM 3D technologies, such as CATIA and Rhino. The second is that close and continuous collaboration among the different participants in the construction of the Tri-Bowl allowed them to cope with virtual conditions. The third is that design and construction processes have changed, and high quality of the surface frame of a freeform building is required.

Interface slip of post-tensioned concrete beams with stage construction: Experimental and FE study

  • Low, Hin Foo;Kong, Sih Ying;Kong, Daniel;Paul, Suvash Chandra
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.173-183
    • /
    • 2019
  • This study presents experimental and numerical results of prestressed concrete composite beams with different casting and stressing sequence. The beams were tested under three-point bending and it was found that prestressed concrete composite beams could not achieve monolith behavior due to interface slippage between two layers. The initial stress distribution due to different construction sequence has little effect on the maximum load of composite beams. The multi-step FE analyses could simulate different casting and stressing sequence thus correctly capturing the initial stress distribution induced by staged construction. Three contact algorithms were considered for interaction between concrete layers in the FE models namely tie constraint, cohesive contact and surface-to-surface contact. It was found that both cohesive contact and surface-to-surface contact could simulate the interface slip even though each algorithm considers different shear transfer mechanism. The use of surface-to-surface contact for beams with more than 2 layers of concrete is not recommended as it underestimates the maximum load in this study.

A Study on Initial Control Performance of the Adsorption Protector for Construction Surface about Contaminant (흡착보양재 적용에 따른 실내 오염물질 초기제어 성능에 관한 연구)

  • Heo, Jung-Yong;Choi, Chang-Ho;Lee, Yun-Gyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.4
    • /
    • pp.229-235
    • /
    • 2009
  • In a domestic construction field, floor surface must be covered not to be scratched and polluted by protector until resident comes in. However this protector restricts the contaminant to leave from floor surface. So when the protector is removed, much contaminant is emitted from the floor surface to inside and makes a bad influence on the indoor air quality, In this research, it will be tested the reduction performance of contaminant between a normal protector and a contaminant absorption protector using charcoal powder.

Cause of Surface voids in Concrete Attached to an Aluminum Form, and Measures for Prevention

  • Noh, Sang-Kyun;Lee, Seung-Hoon;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.5
    • /
    • pp.457-464
    • /
    • 2013
  • Traditionally, the material used for the form in reinforced concrete construction has been wood or steel. But recently, aluminum forms have been widely used in wall structures such as apartment buildings. Aluminum is light, easy to handle, and economically advantageous, but the hydrogen gas created due to its reaction with the alkali component in concrete gives rise to air pockets on the concrete's surface, and deteriorates the surface's finishability. In this research, to determine the influence of aluminum material on concrete, the cement paste W/C and its chemical reactivity in alkali and acid solution were analyzed. As a prevention plan, the influence of the number of applications of calcium hydroxide and various surface coating materials was analyzed. Through the analysis, it was found that the surface voids on the aluminum form are the result of the reaction of hydrogen gas with an alkali such as $Ca(OH)_2$. This can be prevented by the surface treatment of $Ca(OH)_2$, separating material and coating material. However, poor surface form and damages to the form are expected to cause quality degradation because of the aluminum-concrete interaction. Therefore, thorough surface treatment, rather than the type of separating material or coating material, is considered the most important target of management.

Structure-From-Motion Approach to the Reconstruction of Surfaces for Earthwork Planning

  • Nassar, Khaled;Jung, Young-Han
    • Journal of Construction Engineering and Project Management
    • /
    • v.2 no.3
    • /
    • pp.1-7
    • /
    • 2012
  • The reconstruction of surfaces from unorganized point clouds can provide very useful information for construction managers. Although point clouds are generally created using 3D scanners, they can also be generated via the structure-from-motion technique using a sequence of images. Here we report a novel surface reconstruction technique for modeling and quantifying earthworks that can be used for preliminary planning, project updates and estimating of earthwork quantities, as well as embedded planning systems in construction equipment. The application of structure-from-motion techniques in earth works is examined and its advantages and limitations identified. Data from 23 earthwork excavation construction sites were collected and analyzed. 3D surface reconstructions during the construction phase were compared to the original land form. Similar experiments were conducted with piles of earth and the results analyzed to determine appropriate ranges of use for structure-from-motion surface reconstructions in earthwork applications. The technique was found to be most suited to pile of materials with volumes less than 2000 m3. Piles up to 10 m in height and with base areas up to $300m^2$ were also successfully reconstructed. These results should be of interest to contractors seeking to utilize new technology to optimize operational efficiency.

Construction of curve-net interpolation surface considering trajectory of cross-section curves (단면곡선의 궤적을 고려한 곡선망 보간곡면 형성)

  • Yoo, Woo-Sik;Shin, Ha-Yong;Choi, Byoung-K.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.20 no.2
    • /
    • pp.77-90
    • /
    • 1994
  • Curve-net interpolation surface is one of the most popular method in engineering design. Therefore it is supported with many commercial CAD/CAM system. However, construction algorithm of curve-net interpolation surfaces is rarely opened to the public because of its copy-right. In this paper we establish a construction algorithm of curve-net interpolation surface so called sweeping surface which especially concentrates on trajectory of cross-section curve. We also show the method which can construct sweeping surfaces as NURB or Bezier mathematical models. Surfaces having the form of standard mathematical models are very useful for the application of joining, trimming, blending etc. The proposed surface interpolation scheme consists of four steps; (1) preparation of guide curves and section curves, (2) remeshing guide curves and section curves, (3) blending section curves after deformation, and (4) determination of control points for sweeping surface using gordon method. The proposed method guarantee $G^1$-continuety, and construct the surface salifying given section curves and trajectory of section curves.

  • PDF

Evaluation of physical properties of Zn-Al metal coating according to arc metal spray surface treatment method (아크 금속 용사 표면 처리 방법에 따른 Zn-Al 금속 용사 피막의 물리적 특성 평가)

  • Jang, Jong-Min;Kim, Yeung-Kwan;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.89-90
    • /
    • 2022
  • Arc metal spraying is a widely used method for improving the performance of construction structures such as corrosion resistance and electromagnetic wave shielding. However, when arc metal spraying is applied to a concrete structure, adhesion performance may deteriorate. Therefore, the effect of each surface treatment method on the physical properties between the arc metal spray coating and concrete was reviewed by evaluating the deposition efficiency and adhesion performance according to the arc metal spray surface treatment method (surface reinforcing agent, roughening agent, and sealing agent). As a result, it is suggested as an optimal surface treatment condition to induce non-interface failure by using a roughening agent and to improve the properties of concrete and metal coatings by applying a surface reinforcing agent and sealing agent.

  • PDF

Study on the Exposed Concrete Construction Formwork According to Attachment Materials (거푸집 붙임재료에 따른 노출콘크리트 시공에 관한 연구)

  • Park, Se-Jun;Lee, Yun-Suk;Lee, Young-Do
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.223-224
    • /
    • 2016
  • Recent local advantages to improve the aesthetics of building materials connected with one of the trend of Exposed Concrete and Construction Method in various facilities and to diversify Showing a tendency to both application and development. This exposed concrete form of the features and materials is, the impact of large commercial viability and can consider I can apply to the surface of construction on a surface The diversification of the material was soon exposed directly linked to the varying aesthetics of concrete, and currently take advantage of the form of material is based on such important factor in our country Based on the concept of Exposed Concrete utilized by some construction site, design and be considered is very important elements of the put to practical use.

  • PDF

A Study on the Analysis of Scaling Failure Cause in L-Shoulder Concrete Structure (L형측구 콘크리트 구조물의 표면박리파손 원인분석에 관한 연구)

  • Jeon, Sung Il;Nam, Jeong Hee;Ahn, Sang Hyeok;An, Ji Hwan
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.27-37
    • /
    • 2014
  • PURPOSES : The purpose of this study is to verify the causes of surface scaling at L-shoulder concrete structure. METHODS : From the literature reviews, mechanisms of frost damage were studied and material properties including strength, air void, spacing factor and scaling resistance of L-shoulder concrete structure were analyzed using core specimens taken by real fields. RESULTS : The spacing factor of air void has relatively high correlation of surface conditions : lower spacing factor at good surfacing condition and vice versa. If the compressive strength is high, even thought spacing factor does not reach the threshold value of reasonable durability, the surface scaling resistance shows higher value. Based on these test results, the compressive strength also provide positive effect on the surface scaling resistance. CONCLUSIONS : The main causes of surface scaling of L-shoulder could be summarized as unsuitable aid void amount and poor quality of air void structure. Secondly, although the compressive strength is not the governing factor of durability, but it shows the positive effect on the surface scaling resistance.