• Title/Summary/Keyword: Surface Combat Management System

Search Result 8, Processing Time 0.022 seconds

A Study on the Design and Verification-Validation of the Supportive Equipment for Shipyard Test of Naval Combat System (함정 전투체계 함상시험을 위한 지원장비 설계 및 검증 연구)

  • Jung, Youngran;Kim, Cheolho;Han, Woonggie;Kim, Jaeick;Kim, Hyunsil
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.318-326
    • /
    • 2014
  • The Shipyard Test of Naval Combat System depends on external factors, such as weather conditions and availability of its sensor-weapon, due to the need of on-board sensor-weapon during the test. This paper suggests the Supportive Equipment using virtual simulator for Shipward Test, in case of the unavailability of the on-board sensor-weapon or the test support force(aircraft, surface ship etc.), to pre-check the functions of the combat system as well as to prepare the Shipyard Test. To mock the real sensor-weapon functions as similar as possible, the Supportive Equipment for Shipyard Test was verified by the Verification and Validation process, which is usually performed while developing models in the Modeling & Simulation field.

A Position of a Anti-Air Weapon System for Fighting Ship's Self-Defence Effectiveness Enhancement (대공방어무기체계의 교전 효과도 향상을 위한 함상 배치 위치 분석)

  • Hwang, Soo-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.41-47
    • /
    • 2006
  • Naval combat system is total management system integrating a ship and several weapon system functions. For the mission of a ship, naval combat system manages features and constraints of each weapon system. Proper treats of each weapon system's conditions guarantee effective performances of naval combat system. In this paper, the relationship of anti-air weapon system's on board position and self-defence effectiveness against anti-surface missiles is studied

History and Development Status of Aegis Ships (이지스함의 역사와 발전 현황)

  • Go, Kyung-min;Jeon, Eun-seon;Park, Tae-yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.433-435
    • /
    • 2015
  • Aegis Combat System(ACS) is a shipboard combat system developed by U.S. Navy. Its name, Aegis, came from a shield 'Aegis' in greek mythology, which Zeus gave to his daughter Athena. U.S. Navy uses Aegis ships(ships which mount ACS) as their main surface forces. It is known as one of the greatest anti-air warfare ship in the world by its ability to detect air threats with AN/SPY-1, phased array radar, superior Target management and command and control capabilities of the combat system, and SM series interceptors. After first Aegis cruiser USS Ticonderoga was deployed at 1983, U.S. Navy continuously put effort in developing Aegis Combat Systems and Aegis ships. They also improve old fashion existing ships by modernize them. In this Paper, to deduct a lesson which Korea Navy should benchmark, it is went through that a history of Aegis ships and development of ACS, and also its feature.

  • PDF

A study of submarine combat management system docker-based server virtualization design and performance analysis

  • Son, Sang-Gil
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.121-129
    • /
    • 2022
  • the Naval Combat Management System(CMS) has been installed and used in various ships since its localization, and has been developed by continuously introducing the latest technology. Recently, surface ship CMS have applied server virtualization and desktop virtualization(Virtual Desktop Infra, VDI) technologies among virtualization technologies to increase system stability and limitations on the limited space and weight of ships. On the other hand, submarine CMS do not have virtualization technology applied, so there are limitations in space and weight limitations and CMS efficiency improvement. To this end, this paper proposes a next-generation submarine CMS using Docker-based server virtualization. Through performance analysis between the processor of the existing CMS and the processor to which Docker-based server virtualization was applied, it was confirmed that the method proposed in this paper is applicable to the next-generation submarine CMS.

Designing Integrated Diagnosis Platform for Heterogeneous Combat System of Surface Vessels (다기종 수상함 전투체계의 통합 진단 플랫폼 설계)

  • Kim, Myeong-hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.186-188
    • /
    • 2021
  • The architecture named IDPS is a design concept of web-based integrated platform for heterogeneous naval combat system, which accomplishes efficiency(decreasing complexity) of diagnosis process and reduces time to diagnose system. Each type of surface vessel has its own diagnostic processes and applications, and that means it also requires its own diagnostic engineer(inefficiency in human resource management). In addition, man-based diagnostic causes quality issues such as difference approach of log analysis in accordance with engineer skills. Thus In this paper, we designed integrated diagnostic platform named IDPS with simplified common process regardless of type of surface vessel and we reinforced IDPS with status decision algorithm(SDA) that judges current software status of vessel based on gathered lots of logs. It will enable engineers to diagnose system more efficiently and to use more resources in utilizing SDA-analyzed diagnostic results.

  • PDF

On the Development of the Generic CFCS for Engineering Level Simulation of the Surface Ship (공학수준 수상함 지휘무장통제체계 범용 모델 개발방안 연구)

  • Jung, Young-Ran;Han, Woong-Gie;Kim, Cheol-Ho;Kim, Jae-Ick
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.380-387
    • /
    • 2011
  • In this paper, we considered the authoritative representation of Command and Fire Control System(CFCS) for the surface ship that was the engineering level model to develop system specifications and to analyze operational concepts on the concept design phase and to analyze military requirements, effectiveness and performance for the system. The engineering level model of CFCS can be used in simulation independently of the surface ship's type, and also it takes reuse, interoperability, and extension into consideration. The detailed sub-models, internal and external data interface, data flow among each sub-model, sensor and weapon models about the engineering level model of CFCS was defined. It was verified via engineering level simulations according to the V&V process.

An Algorithm for Automatic Generation of Dimension and Tolerance Charts (치수/공차표의 자동생성 알고리듬)

  • Jung, Jong-In;Kim, Kwang-Soo;Choi, Hoo-Gon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.1
    • /
    • pp.21-31
    • /
    • 2003
  • Determination of operational dimensions and tolerances is complex if there exist inconsistencies between operational and design specifications. Dimension and tolerance charts (D&T charts) have been used to establish the relationships among operational dimensions in complex machining. This chart proves that individual operations can be harmonized when they are interconnected. However, it is hard to generate the chart manually. Because operational dimensions and tolerances must meet the design specifications, the dimensions and tolerances of interconnected operations have to be verified serially for economical operations. In this paper, the chart is automatically generated from the interconnected operations. More importantly, all operational dimensions and tolerances displayed in the chart have been verified by using LP to meet the design specifications. Finally, the chart is converted to an operational routing sheet that contains a detailed process plan along with cutting speed, feed rate, and operational references based on material hardness, surface finish, and tool nose radius.

Construction of Optimal Anti-submarine Search Patterns for the Anti-submarine Ships Cooperating with Helicopters based on Simulation Method (대잠 헬기와의 협동 작전을 고려한 수상함의 최적 대잠탐색 패턴 산출을 위한 시뮬레이션)

  • Yu, Chan-Woo;Park, Sung-Woon
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.1
    • /
    • pp.33-42
    • /
    • 2014
  • In this paper we analyzed the search patterns for the anti-submarine warfare (ASW) surface ships cooperating with ASW helicopters. For this purpose, we modeled evasive motion of a submarine with a probabilistic method. And maneuvers and search actions of ships and helicopters participating in the anti-submarine search mission are designed. And for each simulation scenario, the case where a ship and a helicopter searches a submarine independently according to its optimized search pattern is compared with the case where the search platforms participate in the ASW mission cooperatively. Based on the simulation results, we proposed the reconfigured search patterns that help cooperative ASW surface ships increase the total cumulative detection probability (CDP).