• Title/Summary/Keyword: Surface Atom

Search Result 273, Processing Time 0.015 seconds

A First-principles Study on the Surface Magnetism of the CsCl Structured CoX (X = Ti, V, Nb) (001) Surface (CsCl 구조를 가지는 CoX(X = Ti, V, Nb) (001) 표면의 자성에 대한 제일원리 연구)

  • Kim, Dong-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.5
    • /
    • pp.139-143
    • /
    • 2015
  • The surface magnetism of the CsCl structured Co binary compounds, CoX (X = Ti, V, Nb) (001) surface was studied with the calculated electronic structure data obtained by the full-potential linearized augmented plane-wave (FLAPW) method. The magnetic moment of the surface Co atom of the Co-terminated CoTi(001) system was $1.19{\mu}_B$, which is enhanced compared with that of the Co atom in the center layer. The magnetic moment of the surface V atom in the V terminated the CoV(001) system was $1.64{\mu}_B$, which is more than twice of the center layered V atom. The magnetic moment of surface Co atom in the Co terminated CoV(001) system has the value of $1.34{\mu}_B$, little bit smaller than the bulk value. The magnetism was disappeared in the Co terminated CoNb(001) system, and the magnetic moment of the surface Nb atom in the Nb terminated CoNb(001) system was $0.26{\mu}_B$ which is little bit decreased compared to the center layer value.

Adsorption of O Atom on Cr (100), (110), (111), and (211) Surfaces: An 5-Parameter Morse Potential Method Study

  • Han, Ling-Li;Liu, Tao
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1867-1872
    • /
    • 2012
  • The 5-parameter Morse potential (5-MP) method for the interaction between O atom and Cr surfaces is constructed in the present work. The adsorption of O on Cr (100), (110), (111), and (211) surfaces are studied with 5-MP in detail. The fourfold hollow site of the Cr (100) surface is favored for O atom. On Cr (110), quasithreefold site is favored with the parallel frequencies (the frequencies of O atom paralleling the metal surface) of 342 and 538 $cm^{-1}$, and perpendicular frequency (the frequency of O atom perpendicular to the metal surface) at 526 $cm^{-1}$. On Cr (111), the most favored mode for O atom is found to be the quasi-threefold site with the perpendicular frequency at 553 $cm^{-1}$ and the parallel frequencies at 253 and 399 $cm^{-1}$. According to our calculation results, we speculate the most preferred mode for O adsorption on Cr (211) surface is the quasithreefold site with the perpendicular frequency at 583 $cm^{-1}$ and the parallel frequencies at 449 and 185 $cm^{-1}$.

Atom-by-Atom Creation and Evaluation of Composite Nanomaterials at RT based on AFM

  • Morita, Seizo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.73-75
    • /
    • 2013
  • Atomic force microscopy (AFM) [1] can now not only image individual atoms but also construct atom letters using atom manipulation method [2]. Therefore, the AFM is the second generation atomic tool following the well-known scanning tunneling microscopy (STM). The AFM, however, has the advantages that it can image even insulating surfaces with atomic resolution and also measure the atomic force itself between the tip-apex outermost atom and the sample surface atom. Noting these advantages, we have been developing a novel bottom-up nanostructuring system, as shown in Fig. 1, based on the AFM. It can identify chemical species of individual atoms [3] and then manipulate selected atom species to the designed site one-by-one [2] to assemble complex nanostructures consisted of many atom species at room temperature (RT). In this invited talk, we will introduce our results toward atom-by-atom assembly of composite nanomaterials based on the AFM at RT. To identify chemical species, we developed the site-specific force spectroscopy at RT by compensating the thermal drift using the atom tracking. By converting the precise site-specific frequency shift curves, we obtained short-range force curves of selected Sn and Si atoms as shown in Fig. 2(a) and 2(b) [4]. Then using the atom-by-atom force spectroscopy at RT, we succeeded in chemical identification of intermixed three atom species in Pb/Sn/Si(111)-(${\surd}3$'${\surd}3$) surface as shown in Fig. 2(c) [3]. To create composite nanostructures, we found the lateral atom interchange phenomenon at RT, which enables us to exchange embedded heterogeneous atoms [2]. By combining this phenomenon with the modified vector scan, we constructed the atom letters "Sn" consisted of substitutional Sn adatoms embedded in Ge adatoms at RT as shown in Fig. 3(a)~(f) [2]. Besides, we found another kind of atom interchange phenomenon at RT that is the vertical atom interchange phenomenon, which directly interchanges the surface selected Sn atoms with the tip apex Si atoms [5]. This method is an advanced interchangeable single atom pen at RT. Then using this method, we created the atom letters "Si" consisted of substituted Si adatoms embedded in Sn adatoms at RT as shown in Fig. 4(a)~(f) [5]. In addition to the above results, we will introduce the simultaneous evaluation of the force and current at the atomic scale using the combined AFM/STM at RT.

  • PDF

Regular Distribution of -OH Fragments on a Si (001)-c(4×2) Surface by Dissociation of Water Molecules (물 분자의 해리에 의한 Si (001)-c(4×2) 표면에서의 수산화기의 균일한 분포)

  • Lee, Soo-Kyung;Oh, Hyun-Chul;Kim, Dae-Hee;Jeong, Yong-Chan;Baek, Seung-Bin;Kim, Yeong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.457-462
    • /
    • 2010
  • Adsorption of a water molecule on a Si (001) surface and its dissociation were studied using density functional theory to study the distribution of -OH fragments on the Si surface. The Si (001) surface was composed of Si dimers, which buckle in a zigzag pattern below the order-disorder transition temperature to reduce the surface energy. When a water molecule approached the Si surface, the O atom of the water molecule favored the down-buckled Si atom, and the H atom of the water molecule favored the up-buckled Si atom. This is explained by the attractions between the negatively charged O of the water and the positively charged down-buckled Si atom and between the positively charged H of the water and the negatively charged up-buckled Si atom. Following the adsorption of the first water molecule on the surface, a second water molecule adsorbed on either the inter-dimer or intra-dimer site of the Si dimer. The dipole-dipole interaction of the two adsorbed water molecules led to the formation of the water dimer, and the dissociation of the water molecules occurred easily below the order-disorder transition temperature. Therefore, the 1/2 monolayer of -OH on the water-terminated Si (001) surface shows a regular distribution. The results shed light on the atomic layer deposition process of alternate gate dielectric materials, such as $HfO_2$.

Interaction of acetone molecule on Si(001) surface: A theoretical study (Si(001) 표면과 acetone 분자의 상호작용에 대한 이론적 연구)

  • Baek, Seung-Bin;Kim, Dae-Hee;Kim, Yeong-Cheol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.35-39
    • /
    • 2008
  • We study the interaction of acetone molecule $[(CH_3)_2CO]$ on Si(001) surface using density functional theory. An acetone molecule is adsorbed on a Si atom of the Si dimer of the Si(001) surface. The adsorption of the acetone molecule on the Si atom at lower height between the two Si atoms of the dimer is more favorable than that on the Si atoms at upper height. Then we calculate an energy variation of dissociation and four-membered ring structures of the acetone molecule adsorbed on the Si surface. Total energy difference between the two structures is about 0.05 eV, indicating that the two structures are almost equally stable. Energy barrier exists when a hydrogen atom is dissociated and adsorbed on the other Si atom of the dimer, while energy barrier does not exist when the adsorbed acetone molecule changes to four-membered ring structure, except for the rotation of the acetone molecule along z-direction. Therefore, four-membered ring structure is kinetically more favorable than the dissociation structure when the acetone molecule is adsorbed on the Si(001) surface.

  • PDF

Indium Nanowire Growth on Si (001) Surface Using Density Functional Theory (Density Functional Theory를 이용한 Si (001) 표면 위의 In 나노선 성장 연구)

  • Kim, Dae-Hyun;Kim, Dae-Hee;Seo, Hwa-Il;Kim, Yeong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.19 no.3
    • /
    • pp.137-141
    • /
    • 2009
  • Density functional theory was utilized to investigate the growth of an indium nanowire on a Si (001) buckled surface. A site between the edge of two Si dimers is most favorable when the first In atom is adsorbed on the surface at an adsorption energy level of 2.26 eV. The energy barriers for migration from other sites to the most favorable site are low. When the second In atom is adsorbed next to the first In atom to form an In dimer perpendicular to the Si dimer row, the adsorption energy is the highest among all adsorption sites. The third In atom prefers either of the sites next to the In dimer along the In dimer direction. The fourth In atom exhibited the same tendency showed by the second atom. The second and fourth In adsorption energy levels are higher than the first and third levels as the In atoms consume the third valence electron by forming In dimers. Therefore, the In nanowire grows perpendicular to the Si dimer row on the Si (001) surface, as it satisfies the bonding of the three valence electrons of the In atoms.

A Brief Comment on Atom Probe Tomography Applications

  • Seol, Jae-Bok;Kim, Young-Tae;Park, Chan-Gyung
    • Applied Microscopy
    • /
    • v.46 no.3
    • /
    • pp.127-133
    • /
    • 2016
  • Atom probe tomography is a time-of-flight mass spectrometry-based microanalysis technique based on the field evaporation of surface atoms of a tip-shaped specimen under an extremely high surface electric field. It enables three-dimensional characterization for deeper understanding of chemical nature in conductive materials at nanometer/atomic level, because of its high depth and spatial resolutions and ppm-level sensitivity. Indeed, the technique has been widely used to investigate the elemental partitioning in the complex microstructures, the segregation of solute atoms to the boundaries, interfaces, and dislocations as well as following of the evolution of precipitation staring from the early stage of cluster formation to the final stage of the equilibrium precipitates. The current review article aims at giving a comment to first atom probe users regarding the limitation of the techniques, providing a brief perspective on how we correctly interprets atom probe data for targeted applications.

The First-principles Calculations on the Half-metallic Properties of (001) and (110) Surfaces of Zinc-blende YC

  • Bialek, Beata;Lee, Jae Il
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • We investigated the half-metallicity and magnetism at the (001) and (110) surfaces of YC in zinc-blende structure by using the all-electron full-potential linearized augmented plane wave method within the generalized gradient approximation. From the calculated local density of states, we found that neither (001) nor (110) surface preserves the half-metallicity. While the magnetic moment of Y atom in the YC bulk is $0.116{\mu}_B$, it is $0.057{\mu}_B$ at the topmost layer of Y-terminated (001) surface. On the contrary, C-terminated (001) YC surface exhibits stronger magnetism than the bulk structure; the calculated magnetic moment on topmost C atom is $1.084{\mu}_B$, while that of C atom in the bulk structure is $0.423{\mu}_B$. The magnetic properties of the non-polar (110) YC surface are slightly enhanced as compared with the bulk structure.

Surface Electronic Structures and Magnetism of a Full-Heusler Alloy Co2CrGa(001): A First-principles Study

  • Jin, Ying-Jiu;Lee, Jae-Il
    • Journal of Magnetics
    • /
    • v.12 no.3
    • /
    • pp.97-102
    • /
    • 2007
  • We have investigated the electronic structures and magnetism of a full Heusler alloy $Co_2CrGa(001)$ surface by using the all-electron full-potential linearized augmented plane wave (FLAPW) method within the generalized gradient approximation (GGA). We considered two types of different terminations: the Co-terminated (Co-Term) and the CrGa-terminated (CrGa-Term) surfaces. From the calculated layer-projected density of states (LDOS), we found that the surface of the CrGa-Term shows nearly half-metallic character while that of the Co-Term is far from the half-metallic. For the Co-Term, the surface Co atom moves down to the bulk region by $0.05{\AA}A$, while the subsurface Cr and Ga atoms move up to the surface layer by 0.05 and $0.01{\AA}$, respectively. For the CrGa-Term, there is a large inward relaxation of the surface Ga atom $(0.07{\AA})$, but the relaxation of the surface Cr atom is very small $(0.01{\AA})$. The relaxations affect not much to the overall shapes of DOS for both terminations, but make the surface states of the surface Cr and Ga atoms for the CrGa-Term shift to higher energy that enhances the nearly half-metallic character of the CrGa-Term. The magnetic moments of the surface $Cr(2.98{\mu}_B)$ in the CrGa-Term and the surface $Co(1.17{\mu}_B)$ in the Co-Term were much increased compared to those of the inner-layers $(1.79\;and\;0.77{\mu}_B)$, respectively, while that of the subsurface Cr atom in the Co-Term was decreased to $1.19{\mu}_B$.