• Title/Summary/Keyword: Surface Alloying

Search Result 233, Processing Time 0.03 seconds

Cr-Mo鋼 熔接熱影響部의 破壞靭性과 熔接入熱量에 관한 硏究 II

  • 임재규;정세희
    • Journal of Welding and Joining
    • /
    • v.5 no.2
    • /
    • pp.9-16
    • /
    • 1987
  • Post weld heat treatment (PWHT) is carried out to increase the fracture toughness in heat affected zone(HAZ) and remove the residual stress. There occur some problems such as toughness decreement and stress relief cracking(SRC) in the coarse grained HAZ subjected to the effect of tempering treatment. Especially, embitterment of structure directly relates to the mode of fracture and is appeared as the difference of fracture surface, that is, grain boundary failure. Therefore, in this paper, PWHT was carried out under the stress of 0, 10, 20 and $30kg/cm^2$ to simulate residual stress in HAZ welded by heat input of 10, 30 and 40KJ/cm. Applied stress in weld HAZ during PWHT assisted precipitin of over saturated alloying element in the structure, and grain boundary failure according to welding heat input didn't almost appear at the heat input of 10 KJ/cm, but it appeared from being the applied stress of $30kg/cm^2$ at $30KJ/cm and 20kg/mm^2$ at 40KJ/cm.

  • PDF

Formation of TiC Composite Layer on Ductile Iron by Laser Surface Modification (레이저 처리에 의한 구상흑연주철의 TiC 복합화에 관한 연구)

  • Kim, Woo-Yeol;Park, Heung-Il
    • Journal of Korea Foundry Society
    • /
    • v.18 no.6
    • /
    • pp.593-603
    • /
    • 1998
  • Commercial ductile iron was coated with titanium and aluminum powders by low pressure plasma spraying and then irradiated with a $CO_2$ laser to produce anti-corrosive TiC composite layer. TiC carbides were precipitated homogeneously in a laser alloyed layer by in-situ reaction between carbon existed in the base metal and titanium with thermal sprayed coating. The formation of gas pores and brittle limited mixing zone with ledeburite microstructure in TiC composite layer were surpressed by the complementary alloying of aluminum. The hardness of TiC composite layer obtained by addition of titanium and aluminum was between 600 and 660 Hv, which was three times as high as the hardness of ferritic ductile iron. From the results of isothermal oxidation at 1123k for 24 hours in air, high temperature oxidation resistance of the TiC composite layer with aluminum was improved and doubled when compared with the TiC composite layer without aluminum.

  • PDF

A Study on the Hydrogen-Storage Characteristics of a Mechanically-Alloyed 2Mg+Ni Mixture (기계적 합금처리된 2Mg+Ni 혼합물의 수소 저장 특성에 관한 연구)

  • Song, Myoung Youp;Rim, Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.9 no.2
    • /
    • pp.47-52
    • /
    • 1998
  • A mixture with a composition $Mg_2Ni$ is mechanically alloyed. Its hydriding and dehydriding properties are compared with those of the intermetallic compound $Mg_2Ni$ prepared by partial melting and sintering. The principal effects of mechanical alloying in a planetary mill and hydriding-dehydriding cycling are considered the enlargement in the specific surface area and the augmentation in the density of defects.

  • PDF

Evolution of Cube Texture in the Nickel-Silver-Stainless steel Multi-layer Sheet

  • Lee, Hee-Gyoun;Jung, Yang-Hong;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.1 no.1
    • /
    • pp.51-55
    • /
    • 1999
  • A Ni/Ag/Stainless steel 310S(SS310S) multi-layer sheet has been fabricated by a combination of vacuum brazing, cold rolling and texture annealing processes. After heat-treating the thin Ni/Ag/SS310S multi-layer sheet at $900^{\circ}C$ for 2h, development of (100)<001>cube texture on Ni surface was revealed by (111) pole figure. Quantitative chemical analysis was made by EPMA for the cross-section of the Ni/Ag/SS310S multi-layer sheet. EPMA results showed that Ag diffusion into the Ni layer, which may suppress the cube texture development, was negligible. A small amount of Cr atoms were detected in the Ni layer. It showed that Ag can be used as a chemical barrier of alloying element atoms in Ni layer for the Ni/Ag/SS310S multi-layer sheet and a strong cube texture was developed for the Ni layer in the Ni/Ag/SS310S multi-layer sheet.

  • PDF

Effect of applying a DC voltage on the interfacial reactions at the zirconia to copper interface (접합계면반응에 미치는 직류전원부하의 영향)

  • Kim, Sung-Jin;Kim, In-Su;Oh, Myung-Hoon;Choi, Hwan
    • Proceedings of the KWS Conference
    • /
    • 1996.05a
    • /
    • pp.6-9
    • /
    • 1996
  • The Joining of copper rod and zirconia tube was carried out in Ar gas atmosphere. There are two type of the joining. The one is the reaction bond consisting of Cu and zirconia was dominated by surface reaction wi th a undetctable very thin layer. It was found that copper elements were diffused to zirconia side, but that most of Z $r^{4+}$ ions were not diffused to copper side. This result means application of a DC voltage to migrate oxygen to the copper/zirconia interface can oxidize metal at the copper /zirconia interface, and the bonding reaction between zirconia and copper oxide may occur. The other is the reaction bonding was dominated by interdiffusion with a very thick interface layer. This result means application of a DC voltage can reduce zirconia at the interface. The bonding reaction is to be an alloying between Zr and Cr.

  • PDF

Sinter-bonding of Iron Based Compacts Containing P and Cu

  • Pieczonka, Tadeusz;Kazior, Jan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.306-307
    • /
    • 2006
  • The sinter-bonding behavior of iron based powder mixtures was investigated. To produce the green compacts to be joined the following powders based on $H{\ddot{o}}gan{\ddot{a}}s$ AB grade NC 100.24 plain iron powder were used: NC 100.24 as delivered, PNC 30, PNC 60 and NC 100.24 + 4%Cu powder mixtures. Dimensional behaviour of all those materials during the sintering cycle was monitored by dilatometry. Simple ring shaped specimens as the outer parts and cylindrical as the inner parts were pressed. The influence of parts' composition on joining strength was established. Diffusion of alloying elements: copper and phosphorous, across the bonding surface was controlled by metallography, SEM and microanalysis.

  • PDF

레이저 표면합금화에 의한 Alloy 600의 미세조직 변화와 내부식성 향상

  • 신진국;강석중;우선기;이홍로;서정훈;김정수
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.98-103
    • /
    • 1997
  • 원전 증기 발생기 재료로 사용되는 Alloy 600의 내부식성 향상을 위하여 레이저 범을 이용한 레이저 표면합금화(Laser Surface Alloying, LSA) 방법을 이용, 표면에 약 200$\mu\textrm{m}$ 두께의 합금층을 형성시켰다. 첨가한 원소는 크롬 또는 크롬과 니켈의 혼합체를 사용하였으며 첨가법으로는 도금과 용사를 이용하였다. 용사법으로 만든 LSA 시편의 특성과 문제점에 대해 고찰하고 이러한 문제점을 해결하는 방법으로 크롬 도금법을 택하였다. 이들 결과를 레이저 처리를 하지 않은 시편들과 비교하여 부식 거동을 분석하였다. 분석 결과 LSA 시편의 경우 As-received 시편, 레이저 표면 용융(LSM) 들과 비교해 아주 우수한 내부식성을 가졌으며 입계 내부식성도 크게 증가하였다. 이는 크롬 첨가로 인해 크롬의 농도가 많아져 부동태 피막의 형성이 쉬워졌기 때문으로 해석되었다.

  • PDF

The Effect of Copper on Feeding Characteristics in Al-Si Alloys

  • Young-Chan Kim;Jae-Ik Cho
    • Journal of Korea Foundry Society
    • /
    • v.43 no.6
    • /
    • pp.294-301
    • /
    • 2023
  • The effects of Cu on feeding and macro-porosity characteristics were investigated in hypo- (A356 and 319) and hypereutectic (391) aluminum-silicon alloys. T-section and Tatur tests showed that the feeding and macro-porosity characteristics were significantly different between the hypo- and hypereutectic alloys. The hole and the pipe in the T-section and the Tatur casting in hypereutectic alloy showed a rough and irregular shape due to the faceted growth of the primary silicon, while the results of the hypoeutectic alloys exhibited a rather smooth surface. However, the addition of Cu did not strongly affect the macro-feeding behavior. It is known that copper segregates and interferes the feeding process in the last stage of solidification, possibly leading to form more amount of micro shrinkage porosity by the addition of Cu. The macro porosity formation mechanism and feeding properties were discussed upon T-section and Tatur tests together with an alloying addition.

Atmospheric Corrosion Process for Weathering Steel

  • Nagano, Hiroo;Yamashita, Masato
    • Corrosion Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.119-124
    • /
    • 2008
  • Steel is generally not corrosion resistant to water with formation of non protective rusts on its surface. Rusts are composed of iron oxides such as $Fe_3O_4$, $\alpha-$, $\beta-$, $\gamma-$and ${\delta}-FeOOH$. However, steel, particularly weathering steel containing small amounts of Cu, Ni and Cr etc., shows good corrosion resistance against rural, industrial or marine environment. Its corrosion rate is exceedingly small as compared with that of carbon steel. According to the exposure test results undertaken in outdoor environments, the atmospheric corrosion rate for weathering steel is only 1 mm for a century. Atmospheric corrosion for steels proceeds under alternate dry and wet conditions. Dry condition is encountered on steel surface on fine or cloudy days, and wet condition is on rainy or snowy days. The reason why weathering steel shows superior atmospheric corrosion resistance is due to formation of corrosion protective rusts on its surface under very thin water layer. The protective rusts are usually composed of two layer rusts; the upper layer is ${\gamma}-FeOOH$ termed as lepidocrocite, and inner layer is nano-particle ${\alpha}-FeOOH$ termed as goethite. This paper is aimed at elucidating the atmospheric corrosion mechanism for steel in comparison with corrosion in bulky water environment by use of empirical data.The summary is as follows: 1. No corrosion protective rusts are formed on steel in bulky water. 2. Atmospheric corrosion for steel is the corrosion under wetting and drying conditions. Corrosion and passivation occur alternately on steel surface. Steel, particularly weathering steel with small amounts of alloying elements such as Cu, Ni and Cr etc. enhances forming corrosion protective rusts by passivation.

Improvement of Wear Resistance and Formation of Si Alloyed Layer on Aluminum Alloy by PTA Process (PTA법에 의한 Al 합금표면의 Si 합금층 형성과 내마모성 개선)

  • ;;松田福久;中田一博
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.134-143
    • /
    • 1997
  • The formation of thick alloyed layer with high Si content have been investigated on the surface of Al alloy (A5083) plate by PTA process with Si powder. Hardening characteristics and wear resistance of alloyed layer was examined in relation to the microstructure of alloyed layer. Thick hardened layer in mm-order thickness on the surface of A5083 plate can be formed by PTA process with wide range of process condition by using Si powder as alloying element because of eutectic reaction of Al-Si binary alloy. High temperature and rapid solidification rate of molten pool, which are features of PTA process, enable the formation of high Si content alloyed layer with uniform distribution of fine primary Si paticle. High plasma arc current was beneficial to make the alloyed layer with smooth surface appearance in wide range of powder feeding rate, because enough volume of molten pool was necessary make alloyed layer. Uniform dispersion of fine primary Si particle with about 30${\mu}{\textrm}{m}$ in particle size can be obtained in layer with Si content ranging from 30 to 50 mass %. Hardness of alloyed layer increased with increasing Si content, but increasing rate of hardness differed with macrostructure of alloyed layer. Wear resistance of alloyed layer depended on $V_{si}$(volume fraction of primary Si) and was remarkably improved to two times of base metal at 20-30% $V_{si}$ without cracking, but no more improvement was obtained at larger $V_{si}$.

  • PDF