• Title/Summary/Keyword: Surf feature points

Search Result 50, Processing Time 0.029 seconds

A Multiple Vehicle Object Detection Algorithm Using Feature Point Matching (특징점 매칭을 이용한 다중 차량 객체 검출 알고리즘)

  • Lee, Kyung-Min;Lin, Chi-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.1
    • /
    • pp.123-128
    • /
    • 2018
  • In this paper, we propose a multi-vehicle object detection algorithm using feature point matching that tracks efficient vehicle objects. The proposed algorithm extracts the feature points of the vehicle using the FAST algorithm for efficient vehicle object tracking. And True if the feature points are included in the image segmented into the 5X5 region. If the feature point is not included, it is processed as False and the corresponding area is blacked to remove unnecessary object information excluding the vehicle object. Then, the post processed area is set as the maximum search window size of the vehicle. And A minimum search window using the outermost feature points of the vehicle is set. By using the set search window, we compensate the disadvantages of the search window size of mean-shift algorithm and track vehicle object. In order to evaluate the performance of the proposed method, SIFT and SURF algorithms are compared and tested. The result is about four times faster than the SIFT algorithm. And it has the advantage of detecting more efficiently than the process of SUFR algorithm.

Patent Image Retrieval Using SURF Direction histograms (SURF 방향 히스토그램을 이용한 특허 영상 검색)

  • Yoo, Ju-Hee;Lee, Kyoung-Mi
    • Journal of KIISE
    • /
    • v.42 no.1
    • /
    • pp.33-43
    • /
    • 2015
  • Recently, patent images are growing importance and thus patent image retrieval is a growing area of research. However, most existing patent image retrieval systems use edges extracted in the images, whose performance is affected by the quality of edge detection in the image pre-processing step. To overcome this disadvantage, we propose a SURF-based patent image retrieval method which uses the morphological characteristics of the images. The proposed method detects SURF interest points with directions and computes regional histograms. We apply the proposed method to a patent image database with 2000 binary images and we show the proposed retrieval system achieves excellent results, even when the images have some loss or degradation.

Panoramic Image Stitching using SURF

  • You, Meng;Lim, Jong-Seok;Kim, Wook-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.26-32
    • /
    • 2011
  • This paper proposes a new method to process panoramic image stitching using SURF(Speeded Up Robust Features). Panoramic image stitching is considered a problem of the correspondence matching. In computer vision, it is difficult to find corresponding points in variable environment where a scale, rotation, view point and illumination are changed. However, SURF algorithm have been widely used to solve the problem of the correspondence matching because it is faster than SIFT(Scale Invariant Feature Transform). In this work, we also describe an efficient approach to decreasing computation time through the homography estimation using RANSAC(random sample consensus). RANSAC is a robust estimation procedure that uses a minimal set of randomly sampled correspondences to estimate image transformation parameters. Experimental results show that our method is robust to rotation, zoom, Gaussian noise and illumination change of the input images and computation time is greatly reduced.

Matching Points Filtering Applied Panorama Image Processing Using SURF and RANSAC Algorithm (SURF와 RANSAC 알고리즘을 이용한 대응점 필터링 적용 파노라마 이미지 처리)

  • Kim, Jeongho;Kim, Daewon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.144-159
    • /
    • 2014
  • Techniques for making a single panoramic image using multiple pictures are widely studied in many areas such as computer vision, computer graphics, etc. The panorama image can be applied to various fields like virtual reality, robot vision areas which require wide-angled shots as an useful way to overcome the limitations such as picture-angle, resolutions, and internal informations of an image taken from a single camera. It is so much meaningful in a point that a panoramic image usually provides better immersion feeling than a plain image. Although there are many ways to build a panoramic image, most of them are using the way of extracting feature points and matching points of each images for making a single panoramic image. In addition, those methods use the RANSAC(RANdom SAmple Consensus) algorithm with matching points and the Homography matrix to transform the image. The SURF(Speeded Up Robust Features) algorithm which is used in this paper to extract featuring points uses an image's black and white informations and local spatial informations. The SURF is widely being used since it is very much robust at detecting image's size, view-point changes, and additionally, faster than the SIFT(Scale Invariant Features Transform) algorithm. The SURF has a shortcoming of making an error which results in decreasing the RANSAC algorithm's performance speed when extracting image's feature points. As a result, this may increase the CPU usage occupation rate. The error of detecting matching points may role as a critical reason for disqualifying panoramic image's accuracy and lucidity. In this paper, in order to minimize errors of extracting matching points, we used $3{\times}3$ region's RGB pixel values around the matching points' coordinates to perform intermediate filtering process for removing wrong matching points. We have also presented analysis and evaluation results relating to enhanced working speed for producing a panorama image, CPU usage rate, extracted matching points' decreasing rate and accuracy.

Fast Image Stitching Based on Improved SURF Algorithm Using Meaningful Features (의미 있는 특징점을 이용한 향상된 SURF 알고리즘 기반의 고속 이미지 스티칭 기법)

  • Ahn, Hyo-Chang;Rhee, Sang-Burm
    • The KIPS Transactions:PartB
    • /
    • v.19B no.2
    • /
    • pp.93-98
    • /
    • 2012
  • Recently, we can easily create high resolution images with digital cameras for high-performance and make use them at variety fields. Especially, the image stitching method which adjusts couple of images has been researched. Image stitching can be used for military purposes such as satellites and reconnaissance aircraft, and computer vision such as medical image and the map. In this paper, we have proposed fast image stitching based on improved SURF algorithm using meaningful features in the process of images matching after extracting features from scenery image. The features are extracted in each image to find out corresponding points. At this time, the meaningful features can be searched by removing the error, such as noise, in extracted features. And these features are used for corresponding points on image matching. The total processing time of image stitching is improved due to the reduced time in searching out corresponding points. In our results, the processing time of feature matching and image stitching is faster than previous algorithms, and also that method can make natural-looking stitched image.

Object Detection and Classification Using Extended Descriptors for Video Surveillance Applications (비디오 감시 응용에서 확장된 기술자를 이용한 물체 검출과 분류)

  • Islam, Mohammad Khairul;Jahan, Farah;Min, Jae-Hong;Baek, Joong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.12-20
    • /
    • 2011
  • In this paper, we propose an efficient object detection and classification algorithm for video surveillance applications. Previous researches mainly concentrated either on object detection or classification using particular type of feature e.g., Scale Invariant Feature Transform (SIFT) or Speeded Up Robust Feature (SURF) etc. In this paper we propose an algorithm that mutually performs object detection and classification. We combinedly use heterogeneous types of features such as texture and color distribution from local patches to increase object detection and classification rates. We perform object detection using spatial clustering on interest points, and use Bag of Words model and Naive Bayes classifier respectively for image representation and classification. Experimental results show that our combined feature is better than the individual local descriptor in object classification rate.

A reliable quasi-dense corresponding points for structure from motion

  • Oh, Jangseok;Hong, Hyunggil;Cho, Yongjun;Yun, Haeyong;Seo, Kap-Ho;Kim, Hochul;Kim, Mingi;Lee, Onseok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3782-3796
    • /
    • 2020
  • A three-dimensional (3D) reconstruction is an important research area in computer vision. The ability to detect and match features across multiple views of a scene is a critical initial step. The tracking matrix W obtained from a 3D reconstruction can be applied to structure from motion (SFM) algorithms for 3D modeling. We often fail to generate an acceptable number of features when processing face or medical images because such images typically contain large homogeneous regions with minimal variation in intensity. In this study, we seek to locate sufficient matching points not only in general images but also in face and medical images, where it is difficult to determine the feature points. The algorithm is implemented on an adaptive threshold value, a scale invariant feature transform (SIFT), affine SIFT, speeded up robust features (SURF), and affine SURF. By applying the algorithm to face and general images and studying the geometric errors, we can achieve quasi-dense matching points that satisfy well-functioning geometric constraints. We also demonstrate a 3D reconstruction with a respectable performance by applying a column space fitting algorithm, which is an SFM algorithm.

A Computer Vision-Based Banknote Recognition System for the Blind with an Accuracy of 98% on Smartphone Videos

  • Sanchez, Gustavo Adrian Ruiz
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.6
    • /
    • pp.67-72
    • /
    • 2019
  • This paper proposes a computer vision-based banknote recognition system intended to assist the blind. This system is robust and fast in recognizing banknotes on videos recorded with a smartphone on real-life scenarios. To reduce the computation time and enable a robust recognition in cluttered environments, this study segments the banknote candidate area from the background utilizing a technique called Pixel-Based Adaptive Segmenter (PBAS). The Speeded-Up Robust Features (SURF) interest point detector is used, and SURF feature vectors are computed only when sufficient interest points are found. The proposed algorithm achieves a recognition accuracy of 98%, a 100% true recognition rate and a 0% false recognition rate. Although Korean banknotes are used as a working example, the proposed system can be applied to recognize other countries' banknotes.

Comparison of Feature Point Extraction Algorithms Using Unmanned Aerial Vehicle RGB Reference Orthophoto (무인항공기 RGB 기준 정사영상을 이용한 특징점 추출 알고리즘 비교)

  • Lee, Kirim;Seong, Jihoon;Jung, Sejung;Shin, Hyeongil;Kim, Dohoon;Lee, Wonhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.263-270
    • /
    • 2024
  • As unmanned aerial vehicles(UAVs) and sensors have been developed in a variety of ways, it has become possible to update information on the ground faster than existing aerial photography or remote sensing. However, acquisition and input of ground control points(GCPs) UAV photogrammetry takes a lot of time, and geometric distortion occurs if measurement and input of GCPs are incorrect. In this study, RGB-based orthophotos were generated to reduce GCPs measurment and input time, and comparison and evaluation were performed by applying feature point algorithms to target orthophotos from various sensors. Four feature point extraction algorithms were applied to the two study sites, and as a result, speeded up robust features(SURF) was the best in terms of the ratio of matching pairs to feature points. When compared overall, the accelerated-KAZE(AKAZE) method extracted the most feature points and matching pairs, and the binary robust invariant scalable keypoints(BRISK) method extracted the fewest feature points and matching pairs. Through these results, it was confirmed that the AKAZE method is superior when performing geometric correction of the objective orthophoto for each sensor.

ROI Based Real Time Image Stitching Using the Directionality of the Image (영상의 방향성을 이용한 ROI 기반 실시간 파노라마 영상 정합)

  • Nam, Ki-Hun;Choi, Se-Jin
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.420-423
    • /
    • 2016
  • In this paper, we proposed an implementation of panoramic image stitching that operates in real time at the embedded environment by applying ROI based PROSAC algorithm using the directionality of the image. The conventional panoramic image stitching applies SURF or SIFT algorithm which contains unnecessary computation and a lots of data to detect feature points. In this paper, we use the direction of the input image and we proposed the method of reducing the unnecessary computation by using ROI. We use a gyro sensor and an acceleration sensor. Output data from gyro and acceleration sensors can be calibrated by complementary filter. The calibration does not affect the operating time of the proposed image stitching algorithm in embedded environment. Therefore, it is possible to operate in real-time.