• Title/Summary/Keyword: Surf feature points

Search Result 50, Processing Time 0.022 seconds

The Target Detection and Classification Method Using SURF Feature Points and Image Displacement in Infrared Images (적외선 영상에서 변위추정 및 SURF 특징을 이용한 표적 탐지 분류 기법)

  • Kim, Jae-Hyup;Choi, Bong-Joon;Chun, Seung-Woo;Lee, Jong-Min;Moon, Young-Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.43-52
    • /
    • 2014
  • In this paper, we propose the target detection method using image displacement, and classification method using SURF(Speeded Up Robust Features) feature points and BAS(Beam Angle Statistics) in infrared images. The SURF method that is a typical correspondence matching method in the area of image processing has been widely used, because it is significantly faster than the SIFT(Scale Invariant Feature Transform) method, and produces a similar performance. In addition, in most SURF based object recognition method, it consists of feature point extraction and matching process. In proposed method, it detects the target area using the displacement, and target classification is performed by using the geometry of SURF feature points. The proposed method was applied to the unmanned target detection/recognition system. The experimental results in virtual images and real images, we have approximately 73~85% of the classification performance.

FPGA Implementation of SURF-based Feature extraction and Descriptor generation (SURF 기반 특징점 추출 및 서술자 생성의 FPGA 구현)

  • Na, Eun-Soo;Jeong, Yong-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.4
    • /
    • pp.483-492
    • /
    • 2013
  • SURF is an algorithm which extracts feature points and generates their descriptors from input images, and it is being used for many applications such as object recognition, tracking, and constructing panorama pictures. Although SURF is known to be robust to changes of scale, rotation, and view points, it is hard to implement it in real time due to its complex and repetitive computations. Using 3.3 GHz Pentium, in our experiment, it takes 240ms to extract feature points and create descriptors in a VGA image containing about 1,000 feature points, which means that software implementation cannot meet the real time requirement, especially in embedded systems. In this paper, we present a hardware architecture that can compute the SURF algorithm very fast while consuming minimum hardware resources. Two key concepts of our architecture are parallelism (for repetitive computations) and efficient line memory usage (obtained by analyzing memory access patterns). As a result of FPGA synthesis using Xilinx Virtex5LX330, it occupies 101,348 LUTs and 1,367 KB on-chip memory, giving performance of 30 frames per second at 100 MHz clock.

An Implementation of a Feature Extraction Hardware Accelerator based on Memory Usage Improvement SURF Algorithm (메모리 사용률을 개선한 SURF 알고리즘 특징점 추출기의 하드웨어 가속기 설계)

  • Jung, Chang-min;Kwak, Jae-chang;Lee, Kwang-yeob
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.77-80
    • /
    • 2013
  • SURF algorithm is an algorithm to extract feature points and to generate descriptors from input images. It is robust to change of environment such as scale, rotation, illumination and view points. Because of these features, it is used for many image processing applications such as object recognition, constructing panorama pictures and 3D image restoration. But there is disadvantage for real time operation because many recognition algorithms such as SURF algorithm requires a lot of calculations. In this paper, we propose a design of feature extractor and descriptor generator based on SURF for high memory efficiency. The proposed design reduced a memory access and memory usage to operate in real time.

  • PDF

Improving Matching Performance of SURF Using Color and Relative Position (위치와 색상 정보를 사용한 SURF 정합 성능 향상 기법)

  • Lee, KyungSeung;Kim, Daehoon;Rho, Seungmin;Hwang, Eenjun
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.394-400
    • /
    • 2012
  • SURF is a robust local invariant feature descriptor and has been used in many applications such as object recognition. Even though this algorithm has similar matching accuracy compared to the SIFT, which is another popular feature extraction algorithm, it has advantage in matching time. However, these descriptors do not consider relative location information of extracted interesting points to guarantee rotation invariance. Also, since they use gray image of original color image, they do not use the color information of images, either. In this paper, we propose a method for improving matching performance of SURF descriptor using the color and relative location information of interest points. The location information is built from the angles between the line connecting the centers of interest points and the orientation line constructed for the center of each interest points. For the color information, color histogram is constructed for the region of each interest point. We show the performance of our scheme through experiments.

Comparative Analysis of the Performance of SIFT and SURF (SIFT 와 SURF 알고리즘의 성능적 비교 분석)

  • Lee, Yong-Hwan;Park, Je-Ho;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.59-64
    • /
    • 2013
  • Accurate and robust image registration is important task in many applications such as image retrieval and computer vision. To perform the image registration, essential required steps are needed in the process: feature detection, extraction, matching, and reconstruction of image. In the process of these function, feature extraction not only plays a key role, but also have a big effect on its performance. There are two representative algorithms for extracting image features, which are scale invariant feature transform (SIFT) and speeded up robust feature (SURF). In this paper, we present and evaluate two methods, focusing on comparative analysis of the performance. Experiments for accurate and robust feature detection are shown on various environments such like scale changes, rotation and affine transformation. Experimental trials revealed that SURF algorithm exhibited a significant result in both extracting feature points and matching time, compared to SIFT method.

Extended SURF Algorithm with Color Invariant Feature and Global Feature (컬러 불변 특징과 광역 특징을 갖는 확장 SURF(Speeded Up Robust Features) 알고리즘)

  • Yoon, Hyun-Sup;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.58-67
    • /
    • 2009
  • A correspondence matching is one of the important tasks in computer vision, and it is not easy to find corresponding points in variable environment where a scale, rotation, view point and illumination are changed. A SURF(Speeded Up Robust Features) algorithm have been widely used to solve the problem of the correspondence matching because it is faster than SIFT(Scale Invariant Feature Transform) with closely maintaining the matching performance. However, because SURF considers only gray image and local geometric information, it is difficult to match corresponding points on the image where similar local patterns are scattered. In order to solve this problem, this paper proposes an extended SURF algorithm that uses the invariant color and global geometric information. The proposed algorithm can improves the matching performance since the color information and global geometric information is used to discriminate similar patterns. In this paper, the superiority of the proposed algorithm is proved by experiments that it is compared with conventional methods on the image where an illumination and a view point are changed and similar patterns exist.

Feature Matching Algorithm Robust To Noise (잡음에 강인한 특징점 정합 기법)

  • Jung, Hyunjo;Yoo, Jisang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.9-12
    • /
    • 2015
  • In this paper, we propose a new feature matching algorithm by modifying and combining the FAST(Features from Accelerated Segment Test) feature detector and SURF feature descriptor which is robust to the distortion of the given image. Scale space is generated to consider the variation of the scale and determine the candidate of features in the image robust to the noise. The original FAST algorithm results in many feature points along edges. To solve this problem, we apply the principal curvatures for refining it. We also use SURF descriptor to make it robust against the variations in the image by rotation. Through the experiments, it is shown that the proposed algorithm has better performance than the conventional feature matching algorithms even though it has much less computational load. Especially, it shows a strength for noisy images.

  • PDF

Integrated Automatic Pre-Processing for Change Detection Based on SURF Algorithm and Mask Filter (변화탐지를 위한 SURF 알고리즘과 마스크필터 기반 통합 자동 전처리)

  • Kim, Taeheon;Lee, Won Hee;Yeom, Junho;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.209-219
    • /
    • 2019
  • Satellite imagery occurs geometric and radiometric errors due to external environmental factors at the acquired time, which in turn causes false-alarm in change detection. These errors should be eliminated by geometric and radiometric corrections. In this study, we propose a methodology that automatically and simultaneously performs geometric and radiometric corrections by using the SURF (Speeded-Up Robust Feature) algorithm and the mask filter. The MPs (Matching Points), which show invariant properties between multi-temporal imagery, extracted through the SURF algorithm are used for automatic geometric correction. Using the properties of the extracted MPs, PIFs (Pseudo Invariant Features) used for relative radiometric correction are selected. Subsequently, secondary PIFs are extracted by generated mask filters around the selected PIFs. After performing automatic using the extracted MPs, we could confirm that geometric and radiometric errors are eliminated as the result of performing the relative radiometric correction using PIFs in geo-rectified images.

Study on a Robust Object Tracking Algorithm Based on Improved SURF Method with CamShift

  • Ahn, Hyochang;Shin, In-Kyoung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.1
    • /
    • pp.41-48
    • /
    • 2018
  • Recently, surveillance systems are widely used, and one of the key technologies in this surveillance system is to recognize and track objects. In order to track a moving object robustly and efficiently in a complex environment, it is necessary to extract the feature points in the interesting object and to track the object using the feature points. In this paper, we propose a method to track interesting objects in real time by eliminating unnecessary information from objects, generating feature point descriptors using only key feature points, and reducing computational complexity for object recognition. Experimental results show that the proposed method is faster and more robust than conventional methods, and can accurately track objects in various environments.

Real-time Multi-Objects Recognition and Tracking Scheme (실시간 다중 객체 인식 및 추적 기법)

  • Kim, Dae-Hoon;Rho, Seung-Min;Hwang, Een-Jun
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.386-393
    • /
    • 2012
  • In this paper, we propose an efficient multi-object recognition and tracking scheme based on interest points of objects and their feature descriptors. To do that, we first define a set of object types of interest and collect their sample images. For sample images, we detect interest points and construct their feature descriptors using SURF. Next, we perform a statistical analysis of the local features to select representative points among them. Intuitively, the representative points of an object are the interest points that best characterize the object. in addition, we make the movement vectors of the interest points based on matching between their SURF descriptors and track the object using these vectors. Since our scheme treats all the objects independently, it can recognize and track multiple objects simultaneously. Through the experiments, we show that our proposed scheme can achieve reasonable performance.