• 제목/요약/키워드: Surcharge loads

검색결과 43건 처리시간 0.027초

강성경사면에 인접한 역T형 옹벽에 작용하는 상재하중에 의한 연직토압분포 (Distribution of Vertical Earth Pressure due to Surcharge Loads Acting on Cantilever Retaining Wall Near Rigid Slope)

  • 유남재;이명욱;박병수;홍영길
    • 한국지반공학회논문집
    • /
    • 제18권6호
    • /
    • pp.141-152
    • /
    • 2002
  • 본 논문은 급경사의 강성사면에 인접한 역 T형 옹벽에 작용하는 상재하중에 의한 연직 토압분포에 관한 실험적 수치해석적 연구결과이다. 강성사면의 조도, 사면과 옹벽 사이의 거리, 중력수준을 변화시킨 원심모형실험을 실시하고 옹벽 뒷채움재에 토압계를 매설하여 연직토압을 측정하였다. 상재하중에 의한 연직토압 분포에 관한 실험 결과를 기존의 두가지의 한계평형 해석이론 및 수치해석 결과와 각각 비교 분석하였다. 정성교(1993, 1997)에 의하여 제시된 보완 사이로이론과 흙쐐기이론을 사용한 한계 평형 해석법을 사용하였으며 그 이론을 확장하여 옹벽 배면 뒷채움재에 작용하는 상재하중에 의한 연직토압분포에 대한 특별해를 구하였다. 수치해석에서는 쌍곡선모델의 흙의 구성관계식이 적용된 FLAC 프로그램을 사용하였다. 수치해석에 의한 토압분포 산정 결과 원심모형실험 결과와 대부분의 경우에서 서로 일치하는 반면에 흙쐐기이론에서는 사면과 옹벽의 거리가 가까운 경우에 한하여 비교적 일치하는 경향을 보였다.

선행하중과 Wick Drain공법에 의한 연약해성광토의 개량 (Improvement of Soft Marine Clay by Preloading and Wick Drain Method)

  • 유태성;박광준
    • 한국지반공학회지:지반
    • /
    • 제3권1호
    • /
    • pp.7-24
    • /
    • 1987
  • 울산만 북서측 임해지역체 발달된 연약해성점토를 개양하기 위하려 선행대중과 Wick Drain공법의 병용공법이 적용되었다. 상기 공법의 적용에 따른 연약해성점토의 거동 및 강침특성을 요명하여, 안전하고 신속하게 시공을 실시하기 위하여 현장계측에 의한 공학적인 시공관리를 실시하였다. 본 고는 연약해성점토를 개량하기 위하여 적용한 선행하중과 Wick Drain공법의 설계, 시공 및 안전관리방법을 수록하고 있다.

  • PDF

모래다짐말뚝과 널말뚝으로 처리된 연약점토지반의 거동 (Behavior of Soft Ground Treated with Sand Compaction Piles and Sheet Piles)

  • 유남재;정길수;박병수;김경수
    • 산업기술연구
    • /
    • 제26권B호
    • /
    • pp.93-99
    • /
    • 2006
  • Centrifuge model experiments were performed to investigate the confining effects of the sheet piles, installed to the sides of soft clay ground treated with sand compaction piles, on the bearing capacity and concentration ratio of composite ground. For the given g-level in the centrifuge model tests, replacement ratio of SCP and the width of surcharge loads on the surface of ground with SCP, the confining effects of installing the sheet piles on the edges of SCP ground on the bearing capacity, change of stress concentration ratio and failure mechanism were investigated. Kaolin, one of typical clay mineral, and Jumunjin standard sand were used as a soft clay ground and sand compaction pile irrespectively. As results of experiments, lateral confining effect by inserting the model sheet piles fixed to the loading plate was observed. For the strip surcharge loading condition, the yielding stress intensity in the form of the strip surcharge loads tends to increase with increasing the embedded depth of sheet piles. The stress concentration ratio was found not to be influenced consistently with the embedded depth of sheet piles whereas the effect of stress intensity on stress concentration ratio shows the general trend that values of stress concentration ratio are relatively high at the initial stage of loading and tend to decrease and converge to the certain values. For the failure mechanism in the case of reinforced with sheet piles, displacement behavior related to the punching failure, settlement right beneath the loading plate occurred since the soil was confined with sheet piles, was observed.

  • PDF

보강재 설치 간격에 따른 지오그리드 보강토옹벽의 변형거동에 관한 모형실험 (Model Tests on Behavior of Geogrid Reinforced Soil Walls with Vertical Spacing of Reinforcement Layers)

  • 조삼덕;이광우;오세용
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.372-379
    • /
    • 2004
  • The model tests were conducted to assess the behavior characteristics of geogrid reinforced earth walls according to various surcharge loads and reinforcement spacing. The models were built in the box having dimension, 100cm tall, 140cm long, and 100cm wide. The reinforcement used was geogrid(tensile strength 2.26t/m). Decomposed granite soil(ML) was used as a backfill material. The LVDTs were installed on the model retaining walls to obtain the displacements of the facing. In the results, the maximum displacement of facing and tensile strain of geogrid was measured at 0.7H(H is wall height) from the bottom of reinforced wall.

  • PDF

An analytical expression for the dynamic active thrust from c-φ soil backfill on retaining walls with wall friction and adhesion

  • Shukla, Sanjay K.;Bathurst, Richard J.
    • Geomechanics and Engineering
    • /
    • 제4권3호
    • /
    • pp.209-218
    • /
    • 2012
  • This paper presents the derivation of an analytical expression for the dynamic active thrust from c-${\phi}$ (c = cohesion, ${\phi}$ = angle of shearing resistance) soil backfill on rigid retaining walls with wall friction and adhesion. The derivation uses the pseudo-static approach considering tension cracks in the backfill, a uniform surcharge on the backfill, and horizontal and vertical seismic loadings. The development of an explicit analytical expression for the critical inclination of the failure plane within the soil backfill is described. It is shown that the analytical expression gives the same results for simpler special cases previously reported in the literature.

열차하중 작용 시 연직토류벽에 발생하는 수평응력 고찰 (A study on horizontal stress of retaining walls caused by train loading)

  • 김대상;김형근;김기환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.964-972
    • /
    • 2008
  • In the retaining wall design process, track and train loads are usually considered as uniform surcharge loads and strip loads. In this paper, the lateral(horizontal) earth pressure on retaining structures caused by track and train load are calculated using the Boussinesq solution. And also total horizontal force per unit length and the location of the resultant force were estimated with the changes of loading locations and widths of the loadings. The maximum horizontal earth pressure and the location of it for high-speed train load were 11.83kPa and 1.7m at the loading condition 2m away from retaining walls.

  • PDF

연악지반의 쇄석다짐말뚝에 대한 거동 분석 (I) (The Behavior of Rammed Aggregate Piers (RAP) in Soft Ground (I))

  • 배경태;이종규
    • 한국지반공학회논문집
    • /
    • 제23권4호
    • /
    • pp.169-183
    • /
    • 2007
  • 쇄석다짐말뚝으로 보강된 연약지반 상 기초지반의 침하특성과 하중분담효과를 구명하기 위하여 말뚝과 지반의 경계면 조건, 치환율, 형상비 및 상재하중 등을 고려하여 말뚝의 입력물성치 산정을 위한 현장재하시험과 수치해석을 수행하였고 본 연구의 해석결과와 비교, 검증하기 위하여 현장원형(prototype)시험을 진행 중에 있다. 아울러 기존의 SCP에 대한 탄성 하중전이 이론을 보정하여 수정식을 제안하였다. 해석결과 연성기초에 설치된 쇄석다짐말뚝의 경우 강성기초와는 다르게 경계면 조건에 따라 크게 영향을 받으며 침하특성은 자유변형률(free strain)로 인하여 말뚝은 감소하고 주변지반은 증가하는 경향을 보였으며 응력집중비는 말뚝 하부로 내려감에 따라 증가하였다. 또한 치환율과 형상비 증가에 따라 최대 응력집중비가 증가하나 어느 한계 이상에서는 수렴되었고 고치환율과 긴 말뚝에서는 상재하중 증가에 따른 영향을 크게 받는 것으로 나타났다.

Physical and numerical modeling of drag load development on a model end-bearing pile

  • Shen, R.F.;Leung, C.F.;Chow, Y.K.
    • Geomechanics and Engineering
    • /
    • 제5권3호
    • /
    • pp.195-221
    • /
    • 2013
  • A centrifuge model study is carried out to investigate the behavior of pile subject to negative skin friction induced by pile installation, ground water drawdown and surcharge loading. A single end-bearing pile is examined as the induced negative skin friction would induce the most severe stress on the pile structural material as compared to friction piles. In addition, the behavior of the pile under simultaneous negative skin friction and dead/live loads is examined. To facilitate detailed interpretations of the test results, the model setup is extensively instrumented and involves elaborate test control schemes. To further examine the phenomenon of negative skin friction on an end-bearing pile, finite element analyses were conducted. The numerical analysis is first validated against the centrifuge test data and subsequently extended to examine the effects of pile slenderness ratio, surcharge intensity and pile-soil stiffness ratio on the degree of mobilization of negative skin friction induced on the pile. Finally experimental and numerical studies are conducted to examine the effect of applied transient live load on pile subject to negative skin friction.

Reliability analysis of external and internal stability of reinforced soil under static and seismic loads

  • Ahmadi, Rebin;Jahromi, Saeed Ghaffarpour;Shabakhty, Naser
    • Geomechanics and Engineering
    • /
    • 제29권6호
    • /
    • pp.599-614
    • /
    • 2022
  • In this study, the reliability analysis of internal and external stabilities of Reinforced Soil Walls (RSWs) under static and seismic loads are investigated so that it can help the geotechnical engineers to perform the design more realistically. The effect of various variables such as angle of internal soil friction, soil specific gravity, tensile strength of the reinforcements, base friction, surcharge load and finally horizontal earthquake acceleration are examined assuming the variables uncertainties. Also, the correlation coefficient impact between variables, sensitivity analysis, mean change, coefficient of variation and type of probability distribution function were evaluated. In this research, external stability (sliding, overturning and bearing capacity) and internal stability (tensile rupture and pull out) in both static and seismic conditions were investigated. Results of this study indicated sliding as the predominant failure mode in the external stability and reinforcing rupture in the internal stability. First-Order Reliability Method (FORM) are applied to estimate the reliability index (or failure probability) and results are validated using the Monte Carlo Simulation (MCS) method. The results showed among all variables, the internal friction angle and horizontal earthquake acceleration have dominant impact on the both reinforced soil wall internal and external stabilities limit states. Also, the type of probability distribution function affects the reliability index significantly and coefficient of variation of internal friction angle has the greatest influence in the static and seismic limits states compared to the other variables.

쇄석다짐말뚝에 의한 연약지반의 액상화 저감효과에 관한 연구 (Liquefaction Remediation by Rammed Aggregate Piers(RAP) on Soft Ground)

  • 안동석;배경태;박성완
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1030-1035
    • /
    • 2008
  • Dynamic numerical analyses were performed to investigate the response of liquefaction remediation of rammed aggregate piers(RAP) on soft ground under free strain conditions. The safe factors of the soft ground reinforced by RAP during seismic loading of magnitude 6.5 were calculated. The results of simulation showed that factors of safety were affected various area replacement ratios, surcharge loads and depth of RAP systems.

  • PDF