• Title/Summary/Keyword: Supramolecular

검색결과 126건 처리시간 0.027초

Design of Electroluminescent Polymer for Polymer Light Emitting Diode

  • Chen, Show-An
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.19-20
    • /
    • 2006
  • We report the design of electroluminescent conjugated polymers for high efficiency, turn-on voltage, color Tuning, and easy processing. Three approaches for the design are reported, being: (1) single chain consideration, (2) supramolecular structure consideration, and (3) conformation manipulation. Two polymer systems are to be reported, being fluorene-based and carbazole-based conjugated polymers.

  • PDF

Multicomponent Nanostructured Materials for Separation Membranes

  • Peinemann, Klaus-Viktor
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 Proceedings of the second conference of aseanian membrane society
    • /
    • pp.11-11
    • /
    • 2004
  • Under the coordination of GKSS a new European project in the field of membrane development started recently. This project focuses on the development of novel nanostructured materials for selective material transport and separation. Two classes of materials will be developed in this project: nanostructured organic/inorganic hybrid materials and functional self-organized supramolecular copolymers.(omitted)

  • PDF

초분자 고체전해질을 이용한 고효율 염료감응형 태양전지 (Solid-state Supramolecular polymer electrolytes containing double hydrogen bonding sites for high efficiency dye-sensitized solar cells(DSSCs))

  • 김선영;전라선;이용건;강용수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.309-311
    • /
    • 2007
  • Supramolecules containing double hydrogen bonding sites at their both chain ends were self-polymerized to become solid state polymer and were utilized to improve the efficiency of solid state DSSCs. Hydrogen bonding sites were attached at the chain ends of PEG of Mw=2000, such as pyrimethamine and glutaric acid. The solar cell with the solid state supramolecular polymer electrolyte resulted in the overall energy conversion efficiency of 4.63 % with a short circuit current density $(J_{sc})$ of 10.41 $mAcm^{-2}$, an open circuit voltage $V_{oc}$, of 0.71 V and a fill factor (FF) of 0.62 at one sun condition ([oligomer]:[1-methyl-3-propyl imidazolium iodide (MPII)]:$[I_2]$ = 20 : 1 : 0.19, active area = 0.16 $cm^2$, $TiO_2$ layer thickness = 10 ${\mu}m$). The ionic conductivity of the sol id state electrolyte was $5.11{\times}10^{-4}$ (S/cm). The cell performance was characterized by electrochemical impedance spectroscopy and ionic conductivity.

  • PDF

Hydrogen-bonded Molecular Network of Anthraquinone on Au(111)

  • Kim, Ji-Yeon;Yoon, Jong-Keon;Park, Ji-Hun;Kim, Ho-Won;Kahng, Se-Jong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.107-107
    • /
    • 2011
  • Supramolecular structures of anthraquinone molecules on a metallic surface are studied using scanning tunneling microscope (STM) under ultrahigh-vacuum conditions. When we deposited anthraquinone molecules on Au(111) substrate, the molecules formed three different phases (Chevron type, tetragon type and disordered type) on the surface. Based on our STM measurements, we proposed models for the observed molecular structures. Chevrons are consisted of several molecular chains, which make well-ordered two-dimensional islands by some weak interrow interactions and we could observe tetragon structures which make array of (111) metallic surface. each molecular rows in the chevrons are stabilized by two parallel O-H hydrogen bonds and disordered structures are observed 1-dimensional phase with hydrogen bond. First-principles calculations based on density functional theory are performed to reproduce the proposed models. Distances and energy gains for each intermolecular bond are estimated. In this presentation, we explain possible origins of these molecular structures in terms of hydrogen bonds, Van der Waals interactions and molecule-substrate interactions.

  • PDF

Synthesis, Structures and Properties of Three Metal-organic Frameworks Based on 3-(4-((1H-imidazol-1-yl)methyl)phenyl)acrylic Acid

  • Liang, Peng;Ren, Tian-Tian;Tian, Wei-Man;Xu, Wen-Jia;Pan, Gang-Hong;Yin, Xian-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.182-188
    • /
    • 2014
  • Three new transition metal complexes based on Ozagrel $[Cu(Ozagrel)]_n$ (1), $[Zn(Ozagrel)(Cl)]_n$ (2), ${[Mn_2-(Ozagrel)(1,4-ndc)_2]{\cdot}(H_2O)}_n$ (3), (Ozagrel = 3-(4-((1H-imidazol-1-yl)methyl)phenyl)acrylic acid; 1,4-ndc = 1,4-Naphthalenedicarboxylic acid) have been hydrothermally synthesized and characterized by elemental analyse, IR, TG, PXRD, electrochemical analysis and single crystal X-ray diffraction. X-ray structure analysis reveals that 1 and 3 are 3D coordination polymers, while complex 2 is a two-dimensional network polymer, the 2D layers are further packed into 3D supramolecular architectures that are connected through hydrogen bonds. The electrochemistry of 1-3 was studied by cyclic voltammetry in methanol and water using a glassy carbon working electrode. Also, thermal decomposition process and powder X-ray diffraction of complexes were investigated.