• Title/Summary/Keyword: Suppression of Enemy Air Defence

Search Result 2, Processing Time 0.019 seconds

Experimental Validation of Multiple UAVs with Vector Field Guidance for SEAD(Suppression of Enemy Air Defense) (벡터필드 유도기법이 적용된 다수 무인기를 이용한 적 방공망 제압 임무의 실험적 검증)

  • Jung, Wooyoung;Kim, Ki-Duck;Lee, Seongheon;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.282-287
    • /
    • 2015
  • In modern warfare, the importance of SEAD(Suppression of Enemy Air Defense) mission is being emphasized. However, this mission runs the risk of hull damage or casualties of our friendly air forces. Because of these risks, research on the way of minimizing damages and enhancing mission capability is under active discussion. As a part of this research, SEAD mission planning with multiple UAVs has been covered using vector field guidance. This guidance method not only applies to various forms of flight path but also requires less computational power than other guidance methods. Therefore, in this paper, planning methods of SEAD mission for multiple UAVs using vector field guidance and experimental data from flight experiments regarding designed mission has been covered.

Trajectory Generation, Guidance, and Navigation for Terrain Following of Unmanned Combat Aerial Vehicles (무인전투기 근접 지형추종을 위한 궤적생성 및 유도 항법)

  • Oh, Gyeong-Taek;Seo, Joong-Bo;Kim, Hyoung-Seok;Kim, Youdan;Kim, Byungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.979-987
    • /
    • 2012
  • This paper implements and integrates algorithms for terrain following of UCAVs (Unmanned Combat Aerial Vehicles): trajectory generation, guidance, and navigation. Terrain following is very important for UCAVs because they perform very dangerous missions such as Suppression of Enemy Air Defences while the terrain following can improve the survivability of UCAVs against from the air defence systems of the enemy. To deal with the GPS jamming, terrain referenced navigation based on nonlinear filter is chosen. For the trajectory generation, Voronoi diagram is adopted to generate horizontal plane path to avoid the air defense system. Cubic spline method is used to generate vertical plane path to prevent collisions with ground while flying sufficiently close to surface. Follow-the-Carrot and pure pursuit tracking methods, which are look-ahead point based guidance algorithms, are applied for the guidance. Numerical simulation is performed to verify the performance of the integrated terrain following algorithm.