• Title/Summary/Keyword: Supporting pile

Search Result 53, Processing Time 0.023 seconds

A parametric investigation on effect of supporting arrangements on earth retention system

  • Ali Murtaza Rasool;Fawad S. Niazi;Tauqir Ahmed;Mubashir Aziz
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.507-518
    • /
    • 2023
  • The effects of various supporting arrangements have been investigated on an excavation support system using a numerical tool. The purpose of providing different supporting arrangements was to limit the pile wall deflection in the range of 0.5% to 1% of the excavation depth. Firstly, a deep excavation supported by sheet pile wall was modeled and the effects of sheet pile wall thickness, excavation depth and distance to adjacent footings from sheet pile wall face were explored on the soil deformation and wall deflection. Further analysis was performed considering six different arrangements of tieback anchors and struts in order to limit the wall deflections. Case-01 represents the basic excavation geometry supported by sheet pile wall only. In Case-02, sheet pile wall was supported by struts. Case-03 is a sheet pile wall supported by tieback anchors. Likewise, for the Cases 04, 05 and 06, different arrangements of struts and tieback anchors were used. Finally, the effects of different supporting arrangements on soil deformation, sheet pile wall deflection, bending moments and anchor forces have been presented.

A Numerical Analysis of Excavation Method Using Partially Reinforced Soldier Pile (부분보강 엄지말뚝을 이용한 굴착시공방법의 수치해석적 타당성검토)

  • 김준석;김주용;이승래
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.2
    • /
    • pp.5-12
    • /
    • 2000
  • The hazard of excavation may be very high until a supporting system is completely installed. In this paper, an excavation method which uses partially reinforced soldier pile($\square$-shape) inserted by a short length steel bar was proposed and simulated by the finite element method. The reinforcing steel bar is moved down along the stage of excavation to reinforce the stiffness of the supporting system. The result of analysis showed that the risk of failure by bending moment or shear stress could be significantly reduced by the reinforcing effect of the steel bar. The proposed method could be applied to the strut-supporting wall or the diaphragm wall.

  • PDF

Numerical Investigation on Load Supporting Mechanism of a Pile Constructed above Underground Cavity (공동이 존재하는 암반에 시공된 말뚝기초의 하중지지 메카니즘에 관한 수치해석 연구)

  • Choi, Go-Ny;Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.1
    • /
    • pp.5-16
    • /
    • 2011
  • This paper presents the results of a three-dimensional finite element analysis on load supporting mechanism of pile constructed above underground cavity in limestone rock formation. Considering a wide range of cavity conditions, the behavior of pile was studied using the bearing capacity, rock yielding pattern, stress distribution and deformation of pile head and the cavity. The results indicate that the load transfer mechanism of pile, rock yielding pattern and the reduction of bearing capacity of pile significantly vary with the location, size and length of cavity. Based on the results, graphical solutions defining the reduction of the bearing capacity with specific cavity conditions were suggested.

A Group Pile Effect on Changing Size of Pile Cap in Group Pile under Sand Soil in Earthquake (지진 시 사질토 지반에 근입된 무리말뚝의 말뚝 캡 크기가 무리말뚝 효과에 미치는 영향)

  • Lee, Hyunkun;Ahn, Kwangkuk;Kang, Hongsig
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.10
    • /
    • pp.39-46
    • /
    • 2019
  • The interaction between the ground and structures should be considered for seismic design of group piles supporting the superstructure. The p-y curve has been used widely for the analysis of nonlinear relationship between the ground and structures, and various researches have conducted to apply the dynamic p-y curve for seismic design of group piles. This curve considers the interaction between the ground and structures under the dynamic load such as an earthquake. However the supported effect by the pile cap and the interaction by inertia behavior of superstructures. Therefore, the shaking table test was conducted to verify the effect of the change of the pile cap in group piles supporting superstructures embedded in sandy soil. The test condition is that the arrangement and distance between centers of piles are fixed and the length of the pile cap is changed for various distances between the pile cap side and the pile center. The result shows that the distance between the pile cap side and the pile center have an effect on the dynamic p-y curve and the effect of group piles.

Dynamic Analysis of Lateral Pile under Seismic Loading (지진하중을 받는 파일기초의 횡방향 동적 거동해석)

  • 이인모;이현종
    • Geotechnical Engineering
    • /
    • v.4 no.1
    • /
    • pp.29-36
    • /
    • 1988
  • Dynamic analysis of lateral pile under seismic loading is performed in this paper. As an analytical model, the Bean-on-twinkler Foundation Model is used for this study because of its simplicity and acceptible accuracy . The method suggested by Kagawa and Kraft, which can account for non-linear effects, is used for the dynamic P-y relationship This relationship is found to be the most important factor in analysis . Group pile effects are also considered approximately The results of dynamic analysis show that a pile without supporting mass follows the soil movement ; in the case of a pile with supporting mass, the relative displacement between the soil and the pile occurs . When designing piles, it must be considered that piles have to resist the curvatures originated by the soil movement.

  • PDF

Evaluation of Applicability of Steel-pipe Energy Piles Through Thermal Performance Test (TPT) (현장 열성능 평가시험을 통한 강관 에너지파일의 적용성 평가)

  • Lee, Seokjae;Choi, Hangseok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2022
  • A novel steel-pipe energy pile is introduced, in which the deformed rebars for main reinforcing are replaced with steel pipes in a large diameter cast-in-place energy pile. Here, the steel pipes act as not only reinforcements but also heat exchangers by circulating the working fluid through the hollow hole in the steel pipes. Under this concept, the steel-pipe energy pile can serve a role of supporting main structures and exchanging heat with surrounding mediums without installing additional heat exchange pipes. In this study, the steel-pipe energy pile was constructed in a test bed considering the material properties of steel pipes and the subsoil investigation. Then, the thermal performance test (TPT) in cooling condition was conducted in the constructed energy pile to investigate thermal performance. In addition, the thermal performance of the steel-pipe energy pile was compared with that of the conventional large diameter cast-in-place energy pile to evaluate its applicability. As a result, the steel-pipe energy pile showed 11% higher thermal performance than the conventional energy pile along with much simpler construction processes.

Natural frequency of bottom-fixed offshore wind turbines considering pile-soil-interaction with material uncertainties and scouring depth

  • Yi, Jin-Hak;Kim, Sun-Bin;Yoon, Gil-Lim;Andersen, Lars Vabbersgaard
    • Wind and Structures
    • /
    • v.21 no.6
    • /
    • pp.625-639
    • /
    • 2015
  • Monopiles have been most widely used for supporting offshore wind turbines (OWTs) in shallow water areas. However, multi-member lattice-type structures such as jackets and tripods are also considered good alternatives to monopile foundations for relatively deep water areas with depth ranging from 25-50 m owing to their technical and economic feasibility. Moreover, jacket structures have been popular in the oil and gas industry for a long time. However, several unsolved technical issues still persist in the utilization of multi-member lattice-type supporting structures for OWTs; these problems include pile-soil-interaction (PSI) effects, realization of dynamically stable designs to avoid resonances, and quick and safe installation in remote areas. In this study, the effects of PSI on the dynamic properties of bottom-fixed OWTs, including monopile-, tripod- and jacket-supported OWTs, were investigated intensively. The tower and substructure were modeled using conventional beam elements with added mass, and pile foundations were modeled with beam and nonlinear spring elements. The effects of PSI on the dynamic properties of the structure were evaluated using Monte Carlo simulation considering the load amplitude, scouring depth, and the uncertainties in soil properties.

Evaluations of a Seismic Performance of Geosynthetic-Reinforced Embankment Supporting Piles for a Ultra Soft Ground (침하 억제를 위하여 초연약지반에 설치된 섬유보강 성토지지말뚝의 내진성능 평가)

  • Lee, Il-Wha;Kang, Tae-Ho;Lee, Su-Hyung;Lee, Sung-Jin;Bang, Eui-Seok
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.918-927
    • /
    • 2008
  • The problems associated with constructing high-speed concrete track embankments over soft compressible soil has lead to the development and/or extensive use of many of the ground improvement techniques used today. Drains, surcharge loading, and geosynthetic reinforcement, have all been used to solve the settlement and embankment stability issues associated with construction on soft soils. Geosynthetic-reinforced embankment supporting piles method consist of vertical columns that are designed to transfer the load of the embankment through the soft compressible soil layer to a firm foundation and one or more layers of geosynthetic reinforcement placed between the top of the columns and the bottom of the embankment. In the paper, the evaluations of a seismic performance of geosynthetic-reinforced embankment piles for a ultra soft ground during earthquake were studied. the equivalent linear analysis was performed by SHAKE for soft ground. A seismic performance analysis of Piles was performed by GROUP PILE and PLAXIS for geosynthetic-reinforced embankment piles. Guidelines is required for pile displacement during earthquake. Conclusions of the studies come up with a idea for soil stiffness, conditions of pile cap, pile length and span.

  • PDF

Ultimate Capacity of Guardrail Supporting Pile Subjected to Lateral Impact Load Using Centrifuge Model Test (원심모형실험을 통한 차량방호울타리 지지말뚝의 수평방향 충격하중에 대한 극한지지력)

  • Yun, Jong Seok;Lee, Min Jy;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.25-36
    • /
    • 2019
  • The safety barrier is installed on road embankment to prevent vehicles from falling into road side slope. Among the safety barrier, flexible guardrails are usually installed. The flexible guardrail generally consists of a protection cross-beam and supporting in-line piles. These guardrail piles are installed nearby slope edge of road embankment because the side area of the road is much narrow. The protection cross-beam absorbs impact energy caused by vehicle collision. The pile-soil interaction also absorbs the rest of the impact energy and then, finally, the flexible guardrail system resists the impact load. This paper aims to investigate the pile-soil interaction subjected to impact load using centrifuge model tests. In this study, a single pile was installed in compacted residual soil and loaded under lateral impact load. An impact loading system was designed and developed available on centrifuge tests. Using this loading system, a parametric study was performed and the parameters include types of loading and ground. Finally, the ultimate bearing capacity of supporting pile under impact load was analyzed using load-displacement curve and soil reaction pressure distributions at ultimate were evaluated and compared with previous studies.

Dynamic Analysis of Inclined Piles and Countermeasures against their Vulnerability (경사말뚝의 동적거동과 내진성능 향상을 위한 실험적 고찰)

  • 김재홍;황재익;김성렬;김명모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.107-114
    • /
    • 2001
  • When group pile supporting structures are to be subjected to large lateral loads, generally, hatter piles are used in group pile with vertical piles. It is well known that batter piles resist lateral static loads which are acted upon the piles as axial farces quite well but, they show a poor performance under seismic loads. However, it is not yet known how the batter piles behave under dynamic loading and how to strengthen the batter piles to improve the seismic performance. Shaking table tests were performed to investigate the seismic behavior of the batter pile and to bring up the countermeasures to improve the seismic performance. As the result of the shaking table tests, batter piles failed due to not only the excessive increase of compressive force near the pile head but also that of tensile force. In case that the pile head was connected with pile cap by rubber joint, the max. acceleration at the pile cap was reduced due to the high damping ratio of rubber and the max. moment and max. axial farce at the pile head was decreased remarkably. When the inclinations(V:H) of the batter pile were 8:3 and 8:4, max. moment, max. shear force, and max. axial farce were reduced notably and max. acceleration and max. displacement at the pile cap was diminished, too.

  • PDF