• Title/Summary/Keyword: Supported Chemistry

Search Result 410, Processing Time 0.022 seconds

Synthesis and Anticancer Activity of Some Novel 1,3-Diaryl/heteroarylprop-2-en-1-one Derivatives

  • Kinger, Mayank;Park, Jeong Hoon;Lee, Jun Young;Kim, Sang Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2375-2380
    • /
    • 2014
  • In the present investigation, a series of some novel 1,3-diaryl/heteroarylprop-2-en-1-one derivatives (3a-j) have been synthesized and evaluated for their in vitro cytotoxicity against three cancer cell lines, two hepatocarcinoma cell lines HUH-7, Hep-3b and one leukemia cancer cell line MOLT-4. Based on these results, structure-activity relationship (SAR) was studied on modification of $R^1$ and $R^2$ to identify the compound with maximum potency. Amongst the compounds, 3b and 3d strongly inhibited the growth of Hep-3b and MOLT-4 cells with $IC_{50}$ value of 3.39 and $3.63{\mu}M$ respectively. The results obtained from the inhibitory study had further been supported by the reactive oxygen species (ROS) measurement using flow cytometry in MOLT-4 cells. These observations collectively reveal that compounds comprising 1,3-diarylprop-2-en-1-one framework with pyrazole ring at position-3 and heteroaryl/aryl substituents at position-1 can be used as promising anticancer agents.

Effect of Support in HI Decomposition Reaction using Pt Catalyst (Pt 촉매를 이용한 HI분해반응에서 지지체에 따른 영향)

  • Ko, Yun-Ki;Park, Chu-Sik;Kang, Kyoung-Soo;Bae, Ki-Kwang;Kim, Young-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.4
    • /
    • pp.415-423
    • /
    • 2011
  • HI decomposition step certainly demand catalytic reaction for efficient production of hydrogen in SI process. Platinum catalyst can apply to HI decomposition reaction as well as hydrogenation or dehydrogenation. Generally, noble metal is used as catalyst which is loaded form for getting high dispersion and wide active area. In this study, Pt was loaded onto zirconia, ceria, alumina, and silica by impregnation method. HI decomposition reaction was carried out under the condition of $450^{\circ}C$, 1atm, and $167.76h^{-1}$ (WHSV) in a fixed bed reactor for measuring catalytic activity. And property of a catalyst was observed by BET, TEM, XRD and chemisoption analysis. On the basis of experimental results, we discussed about conversion of HI according to physical properties of the loaded Pt catalyst onto each support.

A Status Survey on the Preservice Education of Secondary Science Teachers (중등 과학교사 양성 과정의 실태 분석)

  • Kim, Heui-Baik;Kim, Young-Soo;Pak, Sung-Jae
    • Journal of The Korean Association For Science Education
    • /
    • v.14 no.2
    • /
    • pp.199-213
    • /
    • 1994
  • The quality of science teachers is one of the most important factors to improve the science education in secondary schools. In this study the current status of preservice education of secondary science teachers was surveyed and the directions for the improvement were suggested as follows: 1. The purposes of departments of science education have to be partially revised to include other education programs related to science education than preservice training courses of science teachers. 2. Training courses of integrated science teacher should be organized differently from those of physics, chemistry, biology or earth science teachers because their requirements are different. 3. Strict standards of curricula for training science teacher have to be established and applied practically. 4. The curricula of departments of science education have to reflect the contents and the changes of secondary science education. 5. More credits to subjects on the science education, the nature of science, and the laboratory experiments should be taken in the preservice courses of science teachers. 6. Professors at the department of science education have to use various methods to teach inquiry lab and evaluation techniques so that students can experience them at the training courses. 7. The number of professors majoring in science education at the department of sciece education should be increased. 8. Enough research funds have to be supported to activate the researches in science education.

  • PDF

Electrochemical Analysis of Spontaneous Reduction of Silver on Tape by Mechanochemical Activation (기계화학적 활성에 의해 테이프에 자발적으로 환원된 은의 전기화학적 분석)

  • Yun, Changsuk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1100-1105
    • /
    • 2020
  • We investigated the driving force and the required charges for spontaneous reduction of metal nanoparticles (NPs) on a scotch tape induced by mechanochemical activation. The charges were analyzed based on anodic stripping voltammetry (ASV) of silver, which is proportional to the number of charge identities on the tape. The results supported that the driving force is mechanochemical radicals rather than ions in the light of the high charge density on the tape.

Synthesis and Properties of New Phthaloperinone Dyes (신규 Phthaloperinone 색소의 합성과 특성에 대한 연구)

  • Jun, Kun;Gwon, Seon Yeong;Kim, Sung Hoon
    • Textile Coloration and Finishing
    • /
    • v.27 no.4
    • /
    • pp.275-280
    • /
    • 2015
  • New series of phthaloperinone dyes were synthesized by the condensation reaction between tetrachloro-phthalic anhydride, 2,3-naphthalene dicarboxylic anhydride and o-phenylenediamine, 1,8-diaminonaphthalene, 1,2-diaminoanthraquinone. These dyes absorb at around 370-490nm. It was found that introduction of naphthalene and anthraquinone moiety on the perinone system produces a large bathochromic shift of 100nm. The synthesized dye 7 containing anthraquinone moiety in perinone chromophoric system exhibited superior heat stability and bright color as yellow chromophore. New dye 7 have been investigated in terms of interacting with volatile organic compound(VOC) $EtNH_2$. The sensing behaviour of the dye 7 toward $EtNH_2$ was studied by UV-vis absorption spectroscopy. Sensing mechanism of dye 7 to $EtNH_2$ was supported by theoretical calculations based on DFT method.

Preparation of Fe-ACF/TiO2 Composites and their Photocatalytic Degradation of Waste Water

  • Oh, Won-Chun;Bae, Jang-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.667-674
    • /
    • 2008
  • In this study, we prepared Fe-activated carbon fiber(ACF)/$TiO_2$ composites with titanium (VI) n-butoxide (TNB) as the titanium source for ACF pre-treated with iron compounds through the impregnation method. In terms of textural surface properties, the composites demonstrate a slight decrease in the BET surface area of the samples and an increase in the amount of iron compounds treated. The surface morphology of the Fe-ACF/$TiO_2$ composites was characterized by means of SEM. The composites have a porous texture with homogenous compositions of Fe and titanium dioxide distributed on the sample surfaces. The phase formation and structural transition of the iron compounds and titanium dioxide were observed in X-ray diffraction patterns of the Fe-ACF/$TiO_2$ composites. The chemical composition of the Fe-ACF/$TiO_2$ composites, which was investigated with EDX shows strong peaks for the C, O, Fe and Ti elements. The photo degradation results confirm that the Fe-ACF/$TiO_2$ composites show excellent removal activity for the COD in piggery waste due to photocatalysis of the supported $TiO_2$, radical reaction by Fe species, and the adsorptivity and absorptivity of ACF.

The effects of stacking sequence on the penetration-resistant behaviors of T800 carbon fiber composite plates under low-velocity impact loading

  • Ahmad, Furqan;Hong, Jung-Wuk;Choi, Heung Soap;Park, Soo-Jin;Park, Myung Kyun
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.107-115
    • /
    • 2015
  • Impact damages induced by a low-velocity impact load on carbon fiber reinforced polymer (CFRP) composite plates fabricated with various stacking sequences were studied experimentally. The impact responses of the CFRP composite plates were significantly affected by the laminate stacking sequences. Three types of specimens, specifically quasi-isotropic, unidirectional, and cross-ply, were tested by a constant impact carrying the same impact energy level. An impact load of 3.44 kg, corresponding to 23.62 J, was applied to the center of each plate supported at the boundaries. The unidirectional composite plate showed the worst impact resistance and broke completely into two parts; this was followed by the quasi-isotropic lay-up plate that was perforated by the impact. The cross-ply composite plate exhibited the best resistance to the low-velocity impact load; in this case, the impactor bounced back. Impact parameters such as the peak impact force and absorbed energy were evaluated and compared for the impact resistant characterization of the composites made by different stacking sequences.

Preparation of Copper Nanoparticles in Cellulose Acetate Polymer and the Reaction Chemistry of Copper Complexes in the Polymer

  • Shim, Il-Wun;Noh, Won-Tae;Kwon, Ji-Woon;Jo, Jung-Young;Kim, Kyung-Soo;Kang, Dong-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.563-566
    • /
    • 2002
  • Copper complexes have been directly incorporated into cellulose acetate (CA) and the resulting light blue colored homogeneous films of 5-20 wt.% copper acetate complex concentrations are found to be thermally stable up to 200 $^{\circ}C$. The reaction chem istry of Cu in CA has been investigated by reacting them with small gas molecules such as CO, H2, D2, O2, NO, and olefins in the temperature range of 25-160 $^{\circ}C$, and various Cu-hydride, -carbonyl, -nitrosyl, and olefin species coordinated to Cu sites in CA are characterized by IR and UV/Vis spectroscopic study. The reduction of Cu(II) complexes by reacting with H2 gas at the described conditions results in the formation of Cu2O and copper metal nanoparticles in CA, and their sizes in 30-120 nm range are found to be controlled by adjusting metal complex concentration in CA and/or the reduction reaction conditions. These small copper metal particles show various catalytic reactivity in hydrogenation of olefins and CH3CN; CO oxidation; and NO reduction reactions under relatively mild conditions.

Structural Control of Single-Crystalline Metal Oxide Surfaces toward Bioapplications

  • Ogino, Toshio
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.112-112
    • /
    • 2013
  • Well-defined surfaces of single-crystalline solid materials are starting points of self-organizationof nanostructures and chemical reactions controlled in nanoscale. Although highly ordered atomicarrangement can be obtained on semiconductor surfaces, they can be maintained only in vacuumand not in air or in aqueous environment. Since single-crystalline metal oxide surfaces arechemically stable and no further oxidation occurs, their atomic structures can be utilized fornanofabrication in liquid processes, nanoelectrochemistry and nanobiotechnology. Sapphire is oneof the most stable metal oxides and its crystalline quality is excellent, as can be applied to electronicdevices that require ultralow defect densities. We recently found that chemical phase separationoccurs on sapphire surfaces by annealing processes and the formed nanodomains exhibit specificproperties in air and in water [1,2]. In our experiments, highly selective and controllable adsorptionof various protein molecules is observed on the phase-separated surfaces though the materials andcrystallographic orientations are identical [3,4]. Planar lipid bilayers supported on thephase-separated sapphire surface also exhibit a specific formation site selectivity [5]. Chemicalnanodomains appear on other metal-oxide surfaces, such as well-ordered titania surfaces. Wedemonstrate that surface chemistry of the nanodomains can be characterized in aqueousenvironment using atomic force microscopy equipped with colloidal tips and then show adsorptionand desorption behaviors of various proteins on the phase-separated surfaces.

  • PDF

A Study on Existing Rubber Elasticity Theories for Stress-Strain Behavior of Rubber-like Networks

  • Meissner, B.
    • Elastomers and Composites
    • /
    • v.38 no.2
    • /
    • pp.157-166
    • /
    • 2003
  • The Edwards-Vilgis slip-link theory and the Kaliske-Heinrich extended tube theory were tested experimentally using published experimental data on networks of natural and isoprene rubber and on polysiloxane networks. All parameters were adjusted to achieve an optimum fit. The data description obtained with the EV theory is not satisfactory and the parameter values tend to lie outside their reasonably expected range. But for the region of low strains, the Kaliske-Heinrich theory offers a satisfactorily accurate data description which is able to serve for practical purposes. Its crosslink term, however, is based on approximations which lead to a questionable prediction and values determined for the exponent in the entanglement term lie outside the range expected by the KH model. Thus, the title question cannot be given a positive answer. Conclusions published earlier that the trapped entanglements contribute both to the crosslink and constraint (entanglement) term are supported by the present data analysis. Experimental equibiaxial data on hydrocarbon networks do not show any maximum on their stretch ratio dependence, contrary to the predictions of molecular theories. The stretch ratio dependences of relative reduced stresses do not sensitively reflect differences in the chemical nature of the chain backbone (hydrocarbon vs. siloxane) and in the crosslinking method (end-linking vs. random crosslinking).