• Title/Summary/Keyword: Support Vector Model

Search Result 867, Processing Time 0.026 seconds

A Korean Community-based Question Answering System Using Multiple Machine Learning Methods (다중 기계학습 방법을 이용한 한국어 커뮤니티 기반 질의-응답 시스템)

  • Kwon, Sunjae;Kim, Juae;Kang, Sangwoo;Seo, Jungyun
    • Journal of KIISE
    • /
    • v.43 no.10
    • /
    • pp.1085-1093
    • /
    • 2016
  • Community-based Question Answering system is a system which provides answers for each question from the documents uploaded on web communities. In order to enhance the capacity of question analysis, former methods have developed specific rules suitable for a target region or have applied machine learning to partial processes. However, these methods incur an excessive cost for expanding fields or lead to cases in which system is overfitted for a specific field. This paper proposes a multiple machine learning method which automates the overall process by adapting appropriate machine learning in each procedure for efficient processing of community-based Question Answering system. This system can be divided into question analysis part and answer selection part. The question analysis part consists of the question focus extractor, which analyzes the focused phrases in questions and uses conditional random fields, and the question type classifier, which classifies topics of questions and uses support vector machine. In the answer selection part, the we trains weights that are used by the similarity estimation models through an artificial neural network. Also these are a number of cases in which the results of morphological analysis are not reliable for the data uploaded on web communities. Therefore, we suggest a method that minimizes the impact of morphological analysis by using character features in the stage of question analysis. The proposed system outperforms the former system by showing a Mean Average Precision criteria of 0.765 and R-Precision criteria of 0.872.

A study on entertainment TV show ratings and the number of episodes prediction (국내 예능 시청률과 회차 예측 및 영향요인 분석)

  • Kim, Milim;Lim, Soyeon;Jang, Chohee;Song, Jongwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.6
    • /
    • pp.809-825
    • /
    • 2017
  • The number of TV entertainment shows is increasing. Competition among programs in the entertainment market is intensifying since cable channels air many entertainment TV shows. There is now a need for research on program ratings and the number of episodes. This study presents predictive models for entertainment TV show ratings and number of episodes. We use various data mining techniques such as linear regression, logistic regression, LASSO, random forests, gradient boosting, and support vector machine. The analysis results show that the average program ratings before the first broadcast is affected by broadcasting company, average ratings of the previous season, starting year and number of articles. The average program ratings after the first broadcast is influenced by the rating of the first broadcast, broadcasting company and program type. We also found that the predicted average ratings, starting year, type and broadcasting company are important variables in predicting of the number of episodes.

A Study on the Impact of International Prices on Domestic Prices and Export Prices in Korea (국제물가 변동 충격이 국내물가와 수출물가에 미치는 영향 분석)

  • Kim, Jung Ryol
    • International Commerce and Information Review
    • /
    • v.15 no.4
    • /
    • pp.195-216
    • /
    • 2013
  • In this paper, I investigate how international prices affect domestic prices and export prices in Korea by using vector error correction model(VECM) and estimate its impact on international trade. According to the empirical results, international prices, such as world raw material prices and oil prices, make stronger effects on domestic prices, in order of import, export, producer, and consumer prices. And recent years the effect of international raw material prices on domestic prices becomes larger. It implies importers, exporters and producers are more affected by international prices than consumers are. Therefore, the international trade, import and export, is affected by changes in international prices. Firms, especially importing and exporting companies, should do much efforts on risk managing about raw material prices variation, diversification of raw material suppliers, and oversea resources development. The government is needed to support on firms those efforts while doing its economic policies to cope with economic conditions and the price policy.

  • PDF

Research on Text Classification of Research Reports using Korea National Science and Technology Standards Classification Codes (국가 과학기술 표준분류 체계 기반 연구보고서 문서의 자동 분류 연구)

  • Choi, Jong-Yun;Hahn, Hyuk;Jung, Yuchul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.169-177
    • /
    • 2020
  • In South Korea, the results of R&D in science and technology are submitted to the National Science and Technology Information Service (NTIS) in reports that have Korea national science and technology standard classification codes (K-NSCC). However, considering there are more than 2000 sub-categories, it is non-trivial to choose correct classification codes without a clear understanding of the K-NSCC. In addition, there are few cases of automatic document classification research based on the K-NSCC, and there are no training data in the public domain. To the best of our knowledge, this study is the first attempt to build a highly performing K-NSCC classification system based on NTIS report meta-information from the last five years (2013-2017). To this end, about 210 mid-level categories were selected, and we conducted preprocessing considering the characteristics of research report metadata. More specifically, we propose a convolutional neural network (CNN) technique using only task names and keywords, which are the most influential fields. The proposed model is compared with several machine learning methods (e.g., the linear support vector classifier, CNN, gated recurrent unit, etc.) that show good performance in text classification, and that have a performance advantage of 1% to 7% based on a top-three F1 score.

Fall detection based on acceleration sensor attached to wrist using feature data in frequency space (주파수 공간상의 특징 데이터를 활용한 손목에 부착된 가속도 센서 기반의 낙상 감지)

  • Roh, Jeong Hyun;Kim, Jin Heon
    • Smart Media Journal
    • /
    • v.10 no.3
    • /
    • pp.31-38
    • /
    • 2021
  • It is hard to predict when and where a fall accident will happen. Also, if rapid follow-up measures on it are not performed, a fall accident leads to a threat of life, so studies that can automatically detect a fall accident have become necessary. Among automatic fall-accident detection techniques, a fall detection scheme using an IMU (inertial measurement unit) sensor attached to a wrist is difficult to detect a fall accident due to its movement, but it is recognized as a technique that is easy to wear and has excellent accessibility. To overcome the difficulty in obtaining fall data, this study proposes an algorithm that efficiently learns less data through machine learning such as KNN (k-nearest neighbors) and SVM (support vector machine). In addition, to improve the performance of these mathematical classifiers, this study utilized feature data aquired in the frequency space. The proposed algorithm analyzed the effect by diversifying the parameters of the model and the parameters of the frequency feature extractor through experiments using standard datasets. The proposed algorithm could adequately cope with a realistic problem that fall data are difficult to obtain. Because it is lighter than other classifiers, this algorithm was also easy to implement in small embedded systems where SIMD (single instruction multiple data) processing devices were difficult to mount.

Convergence Study in Development of Severity Adjustment Method for Death with Acute Myocardial Infarction Patients using Machine Learning (머신러닝을 이용한 급성심근경색증 환자의 퇴원 시 사망 중증도 보정 방법 개발에 대한 융복합 연구)

  • Baek, Seol-Kyung;Park, Hye-Jin;Kang, Sung-Hong;Choi, Joon-Young;Park, Jong-Ho
    • Journal of Digital Convergence
    • /
    • v.17 no.2
    • /
    • pp.217-230
    • /
    • 2019
  • This study was conducted to develop a customized severity-adjustment method and to evaluate their validity for acute myocardial infarction(AMI) patients to complement the limitations of the existing severity-adjustment method for comorbidities. For this purpose, the subjects of KCD-7 code I20.0 ~ I20.9, which is the main diagnosis of acute myocardial infarction were extracted using the Korean National Hospital Discharge In-depth Injury survey data from 2006 to 2015. Three tools were used for severity-adjustment method of comorbidities : CCI (charlson comorbidity index), ECI (Elixhauser comorbidity index) and the newly proposed CCS (Clinical Classification Software). The results showed that CCS was the best tool for the severity correction, and that support vector machine model was the most predictable. Therefore, we propose the use of the customized method of severity correction and machine learning techniques from this study for the future research on severity adjustment such as assessment of results of medical service.

White striping degree assessment using computer vision system and consumer acceptance test

  • Kato, Talita;Mastelini, Saulo Martiello;Campos, Gabriel Fillipe Centini;Barbon, Ana Paula Ayub da Costa;Prudencio, Sandra Helena;Shimokomaki, Massami;Soares, Adriana Lourenco;Barbon, Sylvio Jr.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.1015-1026
    • /
    • 2019
  • Objective: The objective of this study was to evaluate three different degrees of white striping (WS) addressing their automatic assessment and customer acceptance. The WS classification was performed based on a computer vision system (CVS), exploring different machine learning (ML) algorithms and the most important image features. Moreover, it was verified by consumer acceptance and purchase intent. Methods: The samples for image analysis were classified by trained specialists, according to severity degrees regarding visual and firmness aspects. Samples were obtained with a digital camera, and 25 features were extracted from these images. ML algorithms were applied aiming to induce a model capable of classifying the samples into three severity degrees. In addition, two sensory analyses were performed: 75 samples properly grilled were used for the first sensory test, and 9 photos for the second. All tests were performed using a 10-cm hybrid hedonic scale (acceptance test) and a 5-point scale (purchase intention). Results: The information gain metric ranked 13 attributes. However, just one type of image feature was not enough to describe the phenomenon. The classification models support vector machine, fuzzy-W, and random forest showed the best results with similar general accuracy (86.4%). The worst performance was obtained by multilayer perceptron (70.9%) with the high error rate in normal (NORM) sample predictions. The sensory analysis of acceptance verified that WS myopathy negatively affects the texture of the broiler breast fillets when grilled and the appearance attribute of the raw samples, which influenced the purchase intention scores of raw samples. Conclusion: The proposed system has proved to be adequate (fast and accurate) for the classification of WS samples. The sensory analysis of acceptance showed that WS myopathy negatively affects the tenderness of the broiler breast fillets when grilled, while the appearance attribute of the raw samples eventually influenced purchase intentions.

Prediction of the direction of stock prices by machine learning techniques (기계학습을 활용한 주식 가격의 이동 방향 예측)

  • Kim, Yonghwan;Song, Seongjoo
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.745-760
    • /
    • 2021
  • Prediction of a stock price has been a subject of interest for a long time in financial markets, and thus, many studies have been conducted in various directions. As the efficient market hypothesis introduced in the 1970s acquired supports, it came to be the majority opinion that it was impossible to predict stock prices. However, recent advances in predictive models have led to new attempts to predict the future prices. Here, we summarize past studies on the price prediction by evaluation measures, and predict the direction of stock prices of Samsung Electronics, LG Chem, and NAVER by applying various machine learning models. In addition to widely used technical indicator variables, accounting indicators such as Price Earning Ratio and Price Book-value Ratio and outputs of the hidden Markov Model are used as predictors. From the results of our analysis, we conclude that no models show significantly better accuracy and it is not possible to predict the direction of stock prices with models used. Considering that the models with extra predictors show relatively high test accuracy, we may expect the possibility of a meaningful improvement in prediction accuracy if proper variables that reflect the opinions and sentiments of investors would be utilized.

Effect of the Learning Image Combinations and Weather Parameters in the PM Estimation from CCTV Images (CCTV 영상으로부터 미세먼지 추정에서 학습영상조합, 기상변수 적용이 결과에 미치는 영향)

  • Won, Taeyeon;Eo, Yang Dam;Sung, Hong ki;Chong, Kyu soo;Youn, Junhee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.573-581
    • /
    • 2020
  • Using CCTV images and weather parameters, a method for estimating PM (Particulate Matter) index was proposed, and an experiment was conducted. For CCTV images, we proposed a method of estimating the PM index by applying a deep learning technique based on a CNN (Convolutional Neural Network) with ROI(Region Of Interest) image including a specific spot and an full area image. In addition, after combining the predicted result values by deep learning with the two weather parameters of humidity and wind speed, a post-processing experiment was also conducted to calculate the modified PM index using the learned regression model. As a result of the experiment, the estimated value of the PM index from the CCTV image was R2(R-Squared) 0.58~0.89, and the result of learning the ROI image and the full area image with the measuring device was the best. The result of post-processing using weather parameters did not always show improvement in accuracy in all cases in the experimental area.

Experimental Comparison of Network Intrusion Detection Models Solving Imbalanced Data Problem (데이터의 불균형성을 제거한 네트워크 침입 탐지 모델 비교 분석)

  • Lee, Jong-Hwa;Bang, Jiwon;Kim, Jong-Wouk;Choi, Mi-Jung
    • KNOM Review
    • /
    • v.23 no.2
    • /
    • pp.18-28
    • /
    • 2020
  • With the development of the virtual community, the benefits that IT technology provides to people in fields such as healthcare, industry, communication, and culture are increasing, and the quality of life is also improving. Accordingly, there are various malicious attacks targeting the developed network environment. Firewalls and intrusion detection systems exist to detect these attacks in advance, but there is a limit to detecting malicious attacks that are evolving day by day. In order to solve this problem, intrusion detection research using machine learning is being actively conducted, but false positives and false negatives are occurring due to imbalance of the learning dataset. In this paper, a Random Oversampling method is used to solve the unbalance problem of the UNSW-NB15 dataset used for network intrusion detection. And through experiments, we compared and analyzed the accuracy, precision, recall, F1-score, training and prediction time, and hardware resource consumption of the models. Based on this study using the Random Oversampling method, we develop a more efficient network intrusion detection model study using other methods and high-performance models that can solve the unbalanced data problem.