• Title/Summary/Keyword: Support Vector Machine-Regression

Search Result 381, Processing Time 0.022 seconds

Optimized machine learning algorithms for predicting the punching shear capacity of RC flat slabs

  • Huajun Yan;Nan Xie;Dandan Shen
    • Advances in concrete construction
    • /
    • v.17 no.1
    • /
    • pp.27-36
    • /
    • 2024
  • Reinforced concrete (RC) flat slabs should be designed based on punching shear strength. As part of this study, machine learning (ML) algorithms were developed to accurately predict the punching shear strength of RC flat slabs without shear reinforcement. It is based on Bayesian optimization (BO), combined with four standard algorithms (Support vector regression, Decision trees, Random forests, Extreme gradient boosting) on 446 datasets that contain six design parameters. Furthermore, an analysis of feature importance is carried out by Shapley additive explanation (SHAP), in order to quantify the effect of design parameters on punching shear strength. According to the results, the BO method produces high prediction accuracy by selecting the optimal hyperparameters for each model. With R2 = 0.985, MAE = 0.0155 MN, RMSE = 0.0244 MN, the BO-XGBoost model performed better than the original XGBoost prediction, which had R2 = 0.917, MAE = 0.064 MN, RMSE = 0.121 MN in total dataset. Additionally, recommendations are provided on how to select factors that will influence punching shear resistance of RC flat slabs without shear reinforcement.

A Study on the Performance Evaluation of Machine Learning for Predicting the Number of Movie Audiences (영화 관객 수 예측을 위한 기계학습 기법의 성능 평가 연구)

  • Jeong, Chan-Mi;Min, Daiki
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.2
    • /
    • pp.49-63
    • /
    • 2020
  • The accurate prediction of box office in the early stage is crucial for film industry to make better managerial decision. With aims to improve the prediction performance, the purpose of this paper is to evaluate the use of machine learning methods. We tested both classification and regression based methods including k-NN, SVM and Random Forest. We first evaluate input variables, which show that reputation-related information generated during the first two-week period after release is significant. Prediction test results show that regression based methods provides lower prediction error, and Random Forest particularly outperforms other machine learning methods. Regression based method has better prediction power when films have small box office earnings. On the other hand, classification based method works better for predicting large box office earnings.

Prediction of Water Usage in Pig Farm based on Machine Learning (기계학습을 이용한 돈사 급수량 예측방안 개발)

  • Lee, Woongsup;Ryu, Jongyeol;Ban, Tae-Won;Kim, Seong Hwan;Choi, Heechul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1560-1566
    • /
    • 2017
  • Recently, accumulation of data on pig farm is enabled through the wide spread of smart pig farm equipped with Internet-of-Things based sensors, and various machine learning algorithms are applied on the data in order to improve the productivity of pig farm. Herein, multiple machine learning schemes are used to predict the water usage in pig farm which is known to be one of the most important element in pig farm management. Especially, regression algorithms, which are linear regression, regression tree and AdaBoost regression, and classification algorithms which are logistic classification, decision tree and support vector machine, are applied to derive a prediction scheme which forecast the water usage based on the temperature and humidity of pig farm. Through performance evaluation, we find that the water usage can be predicted with high accuracy. The proposed scheme can be used to detect the malfunction of water system which prevents the death of pigs and reduces the loss of pig farm.

Comparison of CT Exposure Dose Prediction Models Using Machine Learning-based Body Measurement Information (머신러닝 기반 신체 계측정보를 이용한 CT 피폭선량 예측모델 비교)

  • Hong, Dong-Hee
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.503-509
    • /
    • 2020
  • This study aims to develop a patient-specific radiation exposure dose prediction model based on anthropometric data that can be easily measurable during CT examination, and to be used as basic data for DRL setting and radiation dose management system in the future. In addition, among the machine learning algorithms, the most suitable model for predicting exposure doses is presented. The data used in this study were chest CT scan data, and a data set was constructed based on the data including the patient's anthropometric data. In the pre-processing and sample selection of the data, out of the total number of samples of 250 samples, only chest CT scans were performed without using a contrast agent, and 110 samples including height and weight variables were extracted. Of the 110 samples extracted, 66% was used as a training set, and the remaining 44% were used as a test set for verification. The exposure dose was predicted through random forest, linear regression analysis, and SVM algorithm using Orange version 3.26.0, an open software as a machine learning algorithm. Results Algorithm model prediction accuracy was R^2 0.840 for random forest, R^2 0.969 for linear regression analysis, and R^2 0.189 for SVM. As a result of verifying the prediction rate of the algorithm model, the random forest is the highest with R^2 0.986 of the random forest, R^2 0.973 of the linear regression analysis, and R^2 of 0.204 of the SVM, indicating that the model has the best predictive power.

Comparison of Methodologies for Characterizing Pedestrian-Vehicle Collisions (보행자-차량 충돌사고 특성분석 방법론 비교 연구)

  • Choi, Saerona;Jeong, Eunbi;Oh, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.6
    • /
    • pp.53-66
    • /
    • 2013
  • The major purpose of this study is to evaluate methodologies to predict the injury severity of pedestrian-vehicle collisions. Methodologies to be evaluated and compared in this study include Binary Logistic Regression(BLR), Ordered Probit Model(OPM), Support Vector Machine(SVM) and Decision Tree(DT) method. Valuable insights into applying methodologies to analyze the characteristics of pedestrian injury severity are derived. For the purpose of identifying causal factors affecting the injury severity, statistical approaches such as BLR and OPM are recommended. On the other hand, to achieve better prediction performance, heuristic approaches such as SVM and DT are recommended. It is expected that the outcome of this study would be useful in developing various countermeasures for enhancing pedestrian safety.

Comparison of data mining methods with daily lens data (데일리 렌즈 데이터를 사용한 데이터마이닝 기법 비교)

  • Seok, Kyungha;Lee, Taewoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1341-1348
    • /
    • 2013
  • To solve the classification problems, various data mining techniques have been applied to database marketing, credit scoring and market forecasting. In this paper, we compare various techniques such as bagging, boosting, LASSO, random forest and support vector machine with the daily lens transaction data. The classical techniques-decision tree, logistic regression-are used too. The experiment shows that the random forest has a little smaller misclassification rate and standard error than those of other methods. The performance of the SVM is good in the sense of misclassfication rate and bad in the sense of standard error. Taking the model interpretation and computing time into consideration, we conclude that the LASSO gives the best result.

Effective Korean sentiment classification method using word2vec and ensemble classifier (Word2vec과 앙상블 분류기를 사용한 효율적 한국어 감성 분류 방안)

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.133-140
    • /
    • 2018
  • Accurate sentiment classification is an important research topic in sentiment analysis. This study suggests an efficient classification method of Korean sentiment using word2vec and ensemble methods which have been recently studied variously. For the 200,000 Korean movie review texts, we generate a POS-based BOW feature and a feature using word2vec, and integrated features of two feature representation. We used a single classifier of Logistic Regression, Decision Tree, Naive Bayes, and Support Vector Machine and an ensemble classifier of Adaptive Boost, Bagging, Gradient Boosting, and Random Forest for sentiment classification. As a result of this study, the integrated feature representation composed of BOW feature including adjective and adverb and word2vec feature showed the highest sentiment classification accuracy. Empirical results show that SVM, a single classifier, has the highest performance but ensemble classifiers show similar or slightly lower performance than the single classifier.

A comparison of ATR-FTIR and Raman spectroscopy for the non-destructive examination of terpenoids in medicinal plants essential oils

  • Rahul Joshi;Sushma Kholiya;Himanshu Pandey;Ritu Joshi;Omia Emmanuel;Ameeta Tewari;Taehyun Kim;Byoung-Kwan Cho
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.675-696
    • /
    • 2023
  • Terpenoids, also referred to as terpenes, are a large family of naturally occurring chemical compounds present in the essential oils extracted from medicinal plants. In this study, a nondestructive methodology was created by combining ATR-FT-IR (attenuated total reflectance-Fourier transform infrared), and Raman spectroscopy for the terpenoids assessment in medicinal plants essential oils from ten different geographical locations. Partial least squares regression (PLSR) and support vector regression (SVR) were used as machine learning methodologies. However, a deep learning based model called as one-dimensional convolutional neural network (1D CNN) were also developed for models comparison. With a correlation coefficient (R2) of 0.999 and a lowest RMSEP (root mean squared error of prediction) of 0.006% for the prediction datasets, the SVR model created for FT-IR spectral data outperformed both the PLSR and 1 D CNN models. On the other hand, for the classification of essential oils derived from plants collected from various geographical regions, the created SVM (support vector machine) classification model for Raman spectroscopic data obtained an overall classification accuracy of 0.997% which was superior than the FT-IR (0.986%) data. Based on the results we propose that FT-IR spectroscopy, when coupled with the SVR model, has a significant potential for the non-destructive identification of terpenoids in essential oils compared with destructive chemical analysis methods.

Machine Learning Approach to Classifying Fatal and Non-Fatal Accidents in Industries (사망사고와 부상사고의 산업재해분류를 위한 기계학습 접근법)

  • Kang, Sungsik;Chang, Seong Rok;Suh, Yongyoon
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.5
    • /
    • pp.52-60
    • /
    • 2021
  • As the prevention of fatal accidents is considered an essential part of social responsibilities, both government and individual have devoted efforts to mitigate the unsafe conditions and behaviors that facilitate accidents. Several studies have analyzed the factors that cause fatal accidents and compared them to those of non-fatal accidents. However, studies on mathematical and systematic analysis techniques for identifying the features of fatal accidents are rare. Recently, various industrial fields have employed machine learning algorithms. This study aimed to apply machine learning algorithms for the classification of fatal and non-fatal accidents based on the features of each accident. These features were obtained by text mining literature on accidents. The classification was performed using four machine learning algorithms, which are widely used in industrial fields, including logistic regression, decision tree, neural network, and support vector machine algorithms. The results revealed that the machine learning algorithms exhibited a high accuracy for the classification of accidents into the two categories. In addition, the importance of comparing similar cases between fatal and non-fatal accidents was discussed. This study presented a method for classifying accidents using machine learning algorithms based on the reports on previous studies on accidents.

Estimating small area proportions with kernel logistic regressions models

  • Shim, Jooyong;Hwang, Changha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.4
    • /
    • pp.941-949
    • /
    • 2014
  • Unit level logistic regression model with mixed effects has been used for estimating small area proportions, which treats the spatial effects as random effects and assumes linearity between the logistic link and the covariates. However, when the functional form of the relationship between the logistic link and the covariates is not linear, it may lead to biased estimators of the small area proportions. In this paper, we relax the linearity assumption and propose two types of kernel-based logistic regression models for estimating small area proportions. We also demonstrate the efficiency of our propose models using simulated data and real data.