• Title/Summary/Keyword: Support Vector Clustering

Search Result 90, Processing Time 0.034 seconds

차분진화 기반의 Support Vector Clustering (A Differential Evolution based Support Vector Clustering)

  • 전성해
    • 한국지능시스템학회논문지
    • /
    • 제17권5호
    • /
    • pp.679-683
    • /
    • 2007
  • Vapnik의 통계적 학습이론은 분류, 회귀, 그리고 군집화를 위하여 SVM(support vector machine), SVR(support vector regression), 그리고 SVC(support vector clustering)의 3가지 학습 알고리즘을 포함한다. 이들 중에서 SVC는 가우시안 커널함수에 기반한 지지벡터를 이용하여 비교적 우수한 군집화 결과를 제공하고 있다. 하지만 SVM, SVR과 마찬가지로 SVC도 커널모수와 정규화상수에 대한 최적결정이 요구된다 하지만 대부분의 분석작업에서 사용자의 주관적 경험에 의존하거나 격자탐색과 같이 많은 컴퓨팅 시간을 요구하는 전략에 의존하고 있다. 본 논문에서는 SVC에서 사용되는 커널모수와 정규화상수의 효율적인 결정을 위하여 차분진화를 이용한 DESVC(differential evolution based SVC)를 제안한다 UCI Machine Learning repository의 학습데이터와 시뮬레이션 데이터 집합들을 이용한 실험을 통하여 기존의 기계학습 알고리즘과의 성능평가를 수행한다.

Improvement of Support Vector Clustering using Evolutionary Programming and Bootstrap

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권3호
    • /
    • pp.196-201
    • /
    • 2008
  • Statistical learning theory has three analytical tools which are support vector machine, support vector regression, and support vector clustering for classification, regression, and clustering respectively. In general, their performances are good because they are constructed by convex optimization. But, there are some problems in the methods. One of the problems is the subjective determination of the parameters for kernel function and regularization by the arts of researchers. Also, the results of the learning machines are depended on the selected parameters. In this paper, we propose an efficient method for objective determination of the parameters of support vector clustering which is the clustering method of statistical learning theory. Using evolutionary algorithm and bootstrap method, we select the parameters of kernel function and regularization constant objectively. To verify improved performances of proposed research, we compare our method with established learning algorithms using the data sets form ucr machine learning repository and synthetic data.

Support Vector Machines 기반의 클러스터 결합 기법 (Support Vector Machine based Cluster Merging)

  • 최병인;이정훈
    • 한국지능시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.369-374
    • /
    • 2004
  • Convex한 클러스터간의 최적의 거리와 Fuzzy Convex Clustering(FCC) 방법에 의한 효과적인 클러스터 결합 알고리즘을 제시하였다. 또한 두 convex한 클러스터간의 거리 측정 방법의 문제점인 정확성과 수행속도 개선하기 위하여 Support Vector Machines(SVM) 을 이용한 빠르고 정확한 거리 측정 방법을 제시하였다. 따라서 데이터의 부적절한 표현 없이 클러스터들의 개수를 크게 더 줄일 수 있었다. 본 논문에서는 제시한 알고리즘의 타당성을 위하여 여러 데이터에 대한 실험결과를 보여주므로서 제시한 알고리즘을 실제 영상 분할에 적용하여 다른 클러스터링 방법의 결과와 비교분석한다.

SUPPORT VECTOR MACHINE USING K-MEANS CLUSTERING

  • Lee, S.J.;Park, C.;Jhun, M.;Koo, J.Y.
    • Journal of the Korean Statistical Society
    • /
    • 제36권1호
    • /
    • pp.175-182
    • /
    • 2007
  • The support vector machine has been successful in many applications because of its flexibility and high accuracy. However, when a training data set is large or imbalanced, the support vector machine may suffer from significant computational problem or loss of accuracy in predicting minority classes. We propose a modified version of the support vector machine using the K-means clustering that exploits the information in class labels during the clustering process. For large data sets, our method can save the computation time by reducing the number of data points without significant loss of accuracy. Moreover, our method can deal with imbalanced data sets effectively by alleviating the influence of dominant class.

KMSVDD: K-means Clustering을 이용한 Support Vector Data Description (KMSVOD: Support Vector Data Description using K-means Clustering)

  • 김표재;장형진;송동성;최진영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.90-92
    • /
    • 2006
  • 기존의 Support Vector Data Description (SVDD) 방법은 학습 데이터의 개수가 증가함에 따라 학습 시간이 지수 함수적으로 증가하므로, 대량의 데이터를 학습하는 데에는 한계가 있었다. 본 논문에서는 학습 속도를 빠르게 하기 위해 K-means clustering 알고리즘을 이용하는 SVDD 알고리즘을 제안하고자 한다. 제안된 알고리즘은 기존의 decomposition 방법과 유사하게 K-means clustering 알고리즘을 이용하여 학습 데이터 영역을 sub-grouping한 후 각각의 sub-group들을 개별적으로 학습함으로써 계산량 감소 효과를 얻는다. 이러한 sub-grouping 과정은 hypersphere를 이용하여 학습 데이터를 둘러싸는 SVDD의 학습 특성을 훼손시키지 않으면서 중심점으로 모여진 작은 영역의 학습 데이터를 학습하도록 함으로써, 기존의 SVDD와 비교하여 학습 정확도의 차이 없이 빠른 학습을 가능하게 한다. 다양한 데이터들을 이용한 모의실험을 통하여 그 효과를 검증하도록 한다.

  • PDF

Support Vector Machines를 이용한 Convex 클러스터 결합 알고리즘 (A Convex Cluster Merging Algorithm using Support Vector Machines)

  • 최병인;이정훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.267-270
    • /
    • 2002
  • 본 논문에서는 Support Vector Machines (SVM) 을 이용하여, 빠르고 정확한 두 convex한 클러스터 간의 거리 측정 방법을 제시한다 제시된 방법에서는, SVM에 의해서 생성되는 최적 다차원 평면이 두 클러스터간의 최소 거리를 계산하는데 사용된다. 또한, 본 논문에서는 이러한 두 클러스터 간의 최적의 거리를 사용하여, Fuzzy Convex Clustering (FCC) 방법 (1) 에 의해서 생성되는 Convex 클러스터들을 묶어주는 효과적인 클러스터 결합 알고리즘을 제시하였다. 그러므로, 데이터의 부적절한 표현을 유발하지 않고도 클러스터들의 개수를 좀 더 줄일 수 있었다. 제시한 방법의 타당성을 위하여 여러 실험 결과를 제시하였다

경영사례를 이용한 군집화 유효성 지수의 성능비교 (Performance Comparison of Clustering Validity Indices with Business Applications)

  • 이수현;정영선;김재윤
    • 한국경영과학회지
    • /
    • 제41권2호
    • /
    • pp.17-33
    • /
    • 2016
  • Clustering is one of the leading methods to analyze big data and is used in many different fields. This study deals with Clustering Validity Index (CVI) to verify the effectiveness of clustering results. We compare the performance of CVIs with business applications of various field. In this study, the used CVIs for comparing performance are DU, CH, DB, SVDU, SVCH, and SVDB. The first three CVIs are well-known ones in the existing research and the last three CVIs are based on support vector data description. It has been verified with outstanding performance and qualified as the application ability of CVIs based on support vector data description.

A Clustering Approach to Wind Power Prediction based on Support Vector Regression

  • Kim, Seong-Jun;Seo, In-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권2호
    • /
    • pp.108-112
    • /
    • 2012
  • A sustainable production of electricity is essential for low carbon green growth in South Korea. The generation of wind power as renewable energy has been rapidly growing around the world. Undoubtedly wind energy is unlimited in potential. However, due to its own intermittency and volatility, there are difficulties in the effective harvesting of wind energy and the integration of wind power into the current electric power grid. To cope with this, many works have been done for wind speed and power forecasting. It is reported that, compared with physical persistent models, statistical techniques and computational methods are more useful for short-term forecasting of wind power. Among them, support vector regression (SVR) has much attention in the literature. This paper proposes an SVR based wind speed forecasting. To improve the forecasting accuracy, a fuzzy clustering is adopted in the process of SVR modeling. An illustrative example is also given by using real-world wind farm dataset. According to the experimental results, it is shown that the proposed method provides better forecasts of wind power.

Fine-Grained Mobile Application Clustering Model Using Retrofitted Document Embedding

  • Yoon, Yeo-Chan;Lee, Junwoo;Park, So-Young;Lee, Changki
    • ETRI Journal
    • /
    • 제39권4호
    • /
    • pp.443-454
    • /
    • 2017
  • In this paper, we propose a fine-grained mobile application clustering model using retrofitted document embedding. To automatically determine the clusters and their numbers with no predefined categories, the proposed model initializes the clusters based on title keywords and then merges similar clusters. For improved clustering performance, the proposed model distinguishes between an accurate clustering step with titles and an expansive clustering step with descriptions. During the accurate clustering step, an automatically tagged set is constructed as a result. This set is utilized to learn a high-performance document vector. During the expansive clustering step, more applications are then classified using this document vector. Experimental results showed that the purity of the proposed model increased by 0.19, and the entropy decreased by 1.18, compared with the K-means algorithm. In addition, the mean average precision improved by more than 0.09 in a comparison with a support vector machine classifier.

A SOFT-SENSING MODEL FOR FEEDWATER FLOW RATE USING FUZZY SUPPORT VECTOR REGRESSION

  • Na, Man-Gyun;Yang, Heon-Young;Lim, Dong-Hyuk
    • Nuclear Engineering and Technology
    • /
    • 제40권1호
    • /
    • pp.69-76
    • /
    • 2008
  • Most pressurized water reactors use Venturi flow meters to measure the feedwater flow rate. However, fouling phenomena, which allow corrosion products to accumulate and increase the differential pressure across the Venturi flow meter, can result in an overestimation of the flow rate. In this study, a soft-sensing model based on fuzzy support vector regression was developed to enable accurate on-line prediction of the feedwater flow rate. The available data was divided into two groups by fuzzy c means clustering in order to reduce the training time. The data for training the soft-sensing model was selected from each data group with the aid of a subtractive clustering scheme because informative data increases the learning effect. The proposed soft-sensing model was confirmed with the real plant data of Yonggwang Nuclear Power Plant Unit 3. The root mean square error and relative maximum error of the model were quite small. Hence, this model can be used to validate and monitor existing hardware feedwater flow meters.