• Title/Summary/Keyword: Support Stiffness

Search Result 433, Processing Time 0.027 seconds

Dynamic Characteristics Analysis of Rotor-Bearing System with Support Structures (지지구조물을 고려한 로터-베어링 시스템의 동 특성해석)

  • 박성훈;오택열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.547-550
    • /
    • 1997
  • The dynamic behavior of rotor-bearing system has been investigated using finite element method. A procedure is presented for dynamic modeling of rotor-bearing system which consist of shaft elements, rigid disk, flexible bearing and support structures. A finite element model including the effects of rotary inertia, shear deformation, gyroscopic moments is developed. Linear stiffness and damping coefficient are calculated for 3 lobe sleeve bearing. The whirl frequency, mode shape, stability and unbalance response of rotor system included effect of bearing coefficient and support structures are calculated.

  • PDF

Comparison of black and gray box models of subspace identification under support excitations

  • Datta, Diptojit;Dutta, Anjan
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.4
    • /
    • pp.365-379
    • /
    • 2017
  • This paper presents a comparison of the black-box and the physics based derived gray-box models for subspace identification for structures subjected to support-excitation. The study compares the damage detection capabilities of both these methods for linear time invariant (LTI) systems as well as linear time-varying (LTV) systems by extending the gray-box model for time-varying systems using short-time windows. The numerically simulated IASC-ASCE Phase-I benchmark building has been used to compare the two methods for different damage scenarios. The efficacy of the two methods for the identification of stiffness parameters has been studied in the presence of different levels of sensor noise to simulate on-field conditions. The proposed extension of the gray-box model for LTV systems has been shown to outperform the black-box model in capturing the variation in stiffness parameters for the benchmark building.

Effect of an elastic intermediate support on the vibration characteristics of fluid conveying pipes (배관계 진동특성에 미치는 탄성 중간지지대의 영향)

  • 전오성;정진태;이용봉;황철호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1799-1806
    • /
    • 1991
  • The effect of an elastic intermediate support on the vibration characteristics of a fluid conveying pipe system modeled as simply-simply supported and fixed-fixed supported pipes has been investigated. The approach is based on solving the closed form equation of the 4th order polynomials. The change of natural frequency and critical velocity are also investigated with the fluid density, the fluid velocity, the position and stiffness of the elastic intermediate support varied. The results show that the vibration characteristics of pipe system could be controled by changing the position and/or stiffness of the elastic intermediate support.

An Experimental Study on the Stability of Inclined Earth Retaining (지주식 흙막이의 안정성에 관한 실험적 연구)

  • Seo, Min-Su;Im, Jong-Chul;Jeong, Dong-Uk;Yoo, Jae-Won;Koo, Young-Mo;Kim, Gwang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.99-110
    • /
    • 2012
  • Inclined Earth Retaining Structure Method (IER method, briefly) is developed in order to improve the existing earth retaining method. In IER method, there are three main structures, front support, back support, and head binding. Especially, back support acts the role that reduces the earth pressure acting on the front support. In this study, the stability according to the installation angle and stiffness of front or back support is analysed by model tests. By the test results, it is known that inclined back support is very effective to reduce the earth pressure acting on the front support. Especially, the effect of the stiffness and installation angle of back support is analysed.

An Experimental Study on the Stiffness Change of Scaffold Working Plate caused by Damage of Cross-beam (보재의 손상에 따른 비계용 작업발판의 강성 변화에 대한 실험적 연구)

  • Sung, Yong-won;Kang Min-guk;Won, Jeong-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.5
    • /
    • pp.27-35
    • /
    • 2021
  • This study investigated the change in stiffness and deflection of a scaffold working plate caused by damage to a cross-beam in the plate. Experiments were conducted considering various load and damage conditions of cross-beams. A cross-beam falling off from the working plate was considered damaged. The load-displacement curves of specimens at the center of the uniform load showed that the working plate stiffness decreased by 14.66%-1.89%, depending on the load interval due to the damage of one cross-beam. A reduction in the stiffness of 33.94%-40.76% resulted from the damage of two cross-beams. Moreover, the displacement increased by an average of 25% when one cross-beam was damaged and an average of 65% when two cross-beams were damaged. Therefore, damage to the cross-beam in the working plate can potentially cause accidents and harm workers. As the load increases, the risk of an accident due to the aforementioned damage also increases because the stiffness remarkably decreases with the load increase. Further, the damage to the cross-beam mainly reduces the stiffness but increases the displacement rather than the strength of the working scaffold plate.

Design Optimization for Automotive Wheel Bearings Considering Life and Stiffness (수명과 강성을 고려한 자동차용 휠 베어링의 설계 최적화)

  • Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.94-101
    • /
    • 2023
  • Automotive wheel bearings are a critical component of vehicles that support their weight and facilitate rotation. Life and stiffness are significant performance characteristics of wheel bearings. Designing wheel bearings involves finding optimal design variables that satisfy both performances. CO2 emission reduction and fuel efficiency regulations attribute to the recent increase in design requirements for lightweight and compact automotive parts while maintaining performance. However, achieving a design that maintains performance while reducing weight poses challenges, as performance and weight are generally inversely proportional. In this study, we perform design optimization of automotive wheel bearings considering life and stiffness. We develop a program that calculates the basic rated life and modified rated life based on international standards for evaluating the life of wheel bearings. We develop a regression equation using regression analysis to address the time-consuming stiffness analysis during repetitive analysis. We perform ANOVA and main effect analyses to understand the statistical characteristics of the developed regression equation. Furthermore, we verify its reliability by comparing the predicted and test results. We perform design optimization using the developed life prediction program, stiffness regression equation and weight regression equation. We select bearing specifications and geometry as design variables, weight as the cost function, and life and stiffness as constraints. Through design optimization, we investigate the influence of design variables on the cost function and constraints by comparing the initial and optimal design values.

A Study on the Support Design for Underground Excavation Based on the Rock-Support Interaction Analysis (암반-지보 거동분석에 의거한 지하굴착 지보설계에 관한 연구)

  • 김혁진;조태진;김남연
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • Engineering rock mass classification is extensively used to determine the reasonable support system throughout the tunneling process in the field. Selection of support system based on the results of engineering rock mass classification is simple and straight-forward. However, this method cannot consider the effect of in-situ stresses, mechanical properties of support material, and support installation time on the behavior or rock-support system To handle the various conditions encountered in the underground excavation sites rock-support system. To handle the various conditions encountered in th eunderground excavation sites rock-support interaction program has been developed. This program can analyze the interaction between rock mass and support materials and also can simulate the tunnel excavation-support insstallation process by controlling the support installation time and the stiffness of support system. Practical applicability of this program was verfied by comparing the results of support design to those from rock mass classification for virtual underground excavation at the drilling site KD-06 in Geoje island.

  • PDF

Identification of Structural Defects in Rail Fastening Systems Using Flexural Wave Propagation (굽힘파 전파 특성을 이용한 레일체결장치의 구조 결함 진단)

  • Park, Jeongwon;Park, Junhong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.38-43
    • /
    • 2014
  • An experimental method based on flexural wave propagation is proposed for identification of structural damage in rail fastening systems. The vibration of a rail clamped and supported by viscoelastic pads is significantly influenced by dynamic support properties. Formation of a defect in the rail fastening system induces changes in the flexural wave propagation characteristics owning to the discontinuity in the structural properties. In this study, frequency-dependent support stiffness was measured to monitor this change by a transfer function method. The sensitivity of wave propagation on the defect was measured from the potential energy stored in a continuously supported rail. Further, the damage index was defined as a correlation coefficient between the change in the support stiffness and the sensitivity. The defect location was identified from the calculated damage index.

Propulsion Shafting Alignment Analysis Considering the Interaction between Shaft Deflection and Oil Film Pressure of Sterntube Journal Bearing (축 처짐과 선미관 저널 베어링 유막 압력의 상호작용을 고려한 추진축계 정렬 해석)

  • Cho, Dae-Seung;Jang, Heung-Kyu;Jin, Byung-Mu;Kim, Kookhyun;Kim, Sung-Chan;Kim, Jin-Hyeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.447-455
    • /
    • 2016
  • Precise propulsion shafting alignment of ships is very important to prevent damage of its support bearings due to excessive reaction forces caused by hull deflection, forces acted on propeller and crankshaft, and so forth. In this paper, a new iterative shafting alignment calculation procedure considering the interaction between shaft deflection and oil film pressure of Sterntube Journal Bearing (SJB) bush with single or multiple slopes is proposed. The procedure is based on a pressure analysis to evaluate distributed equivalent support stiffness of SJB by solving Reynolds equation and a deflection analysis of shafting system by a finite element method based on Timoshenko beam theory. SJB is approximated with multi-point biaxial elastic supports equally distributed to its length. Their initial stiffness values are estimated from dynamic reaction force calculated by assuming SJB as single rigid support. Then, the shaft deflection and the support stiffness of SJB are sequentially and iteratively calculated by applying a criteria on deflection variation between sequential calculation results. To demonstrate validity and applicability of the proposed procedure for optimal slope design of SJB, numerical analysis results for a shafting system are described.

The Effectiveness Analysis Due to the Use of Lagrange Equation and the Optimization Technology for Design of the Support Structure of the Optical Mirror System (광학거울 시스템의 지지구조 설계를 위한 라그랑지 방정식과 최적화 기법 적용에 의한 효과분석)

  • Gimm, Hak In;Nam, Byoung Uk;Kim, Gwang Tae;Kim, Byung Un
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.264-278
    • /
    • 2018
  • The support structure of an optical mirror system is the one of the important design elements because the one affects the optical aberrations of the mirror surface. In this paper, Lagrange equation of the moving body of the fast steering mirror system(FSM) has been formulated to use with optimization design. Major goals for optimization are to assign the reasonably flexible stiffness to the structure and to enhance the first natural frequency of the mirror and support system in aid of more affordable control bandwidth for the FSM. Pursuing these purposes with the proposed method, the finite element analysis(FEA), optimization technique and the Zernike polynomial estimation are used for the design effects. It is concluded that the proposed approach for design well guides toward the desired design goals with regards to both structural and optical performances.