• Title/Summary/Keyword: Support Stiffness

Search Result 436, Processing Time 0.026 seconds

Investigation on Transient Vibration of Piping System to Heater in a Power Plant (발전소 가열기 급수용 배관계 이상 진동 고찰)

  • 양경현;조철환;배춘희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.975-978
    • /
    • 2004
  • There was transient vibration on the piping system from #4 heater to the deaerator in a power plant. We found it was resulted from resonance between the natural vibration of the piping system and vibration induced by flow of feedwater. We verified it would reduce vibration by increasing stiffness of the piping system. Therefore we concluded that it would be generally better to increase stiffness of the piping system to reduce vibration amplitude of 10Hz low for big sized piping systems.

  • PDF

Finite Element Analysis and Evaluation of Rubber Spring for Railway Vehicle (철도차량용 고무스프링 특성해석 및 평가)

  • Woo, Chang-Su;Kim, Wan-Doo;Choi, Byung-Ik;Park, Hyun-Sung;Kim, Kyung-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.773-778
    • /
    • 2009
  • Chevron rubber springs are used in primary suspensions for rail vehicle. Chevron rubber spring have function which reduce vibration and noise, support load carried in operation of rail vehicle. Prediction and evaluation of characteristics are very important in design procedure to assure the safety and reliability of the rubber spring. The computer simulation using the nonlinear finite element analysis program executed to predict and evaluate the load capacity and stiffness for the chevron spring. The non-linear properties of rubber which are described as strain energy functions are important parameters. These are determined by material tests which are uniaxial tension, equi-biaxial tension and shear test. The appropriate shape and material properties are proposed to adjust the required characteristics of rubber springs in the three modes of flexibility.

Axial Permanent Magnetic Bearing Design For a Low-Loss Energy Storage Device Mounted on Hybrid Bearing System (하이브리드 베어링 지지 저손실 에너지 저장 시스템의 축방향 영구자석 베어링 설계기술 연구)

  • 경진호;김유일;최상규;김영철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.272-277
    • /
    • 1997
  • The axial bearing using two ring type permanent magnets to support the weight of a flywheel is proposed to reduce the bearing loss in a flywheel energy storage , system. Two permanent magnet makes stable force in axial direction but unstable force in lateral direction. The lateral unstable stiffness is identified quantitatively using flux analysis, and then through the rotor dynamic analysis on a rigid flywheel system the unstable effects on the system by the stiffness is investigated.

  • PDF

Load-carrying capacity of geosynthetic encased stone columns (지오그리드 보강 스톤컬럼 공법의 하중 지지 특성)

  • Yoo, Chung-Sik;Kim, Sun-Bin;Lee, Dae-Young;Park, Sun-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.396-404
    • /
    • 2009
  • This paper presents the results of numerical investigation on support mechanism of geogrid-encased stone columns for use in soft ground. A number of cases were analyzed using a axial- and 3D stress-pore pressure coupled model that can effectively model construction sequence and drainage as well as reinforcing effects of geogrid-encased stone columns. The results indicated that the geogrid encasement tends to significantly improve the load carrying of a stone column. Also revealed was that such a confinement effect depends on encasement length and stiffness of geogrid. It is also shown that there exist critical encasement length and stiffness of geogrid for a given condition.

  • PDF

Buckling analysis of piles in weak single-layered soil with consideration of geometric nonlinearities

  • Emina Hajdo;Emina Hadzalic;Adnan Ibrahimbegovic
    • Coupled systems mechanics
    • /
    • v.13 no.3
    • /
    • pp.187-200
    • /
    • 2024
  • This paper presents a numerical model for buckling analysis of slender piles, such as micropiles. The model incorporates geometric nonlinearities to provide enhanced accuracy and a more comprehensive representation of pile buckling behavior. Specifically, the pile is represented using geometrically nonlinear beams with the von Karman deformation measure. The lateral support provided by the surrounding soil is modeled using the spring approach, with the spring stiffness determined according to the undrained shear strength of the soil. The numerical model is tested across a wide range of pile slenderness ratios and undrained shear strengths of the surrounding soil. The numerical results are validated against analytical solutions. Furthermore, the influence of various pile bottom end boundary conditions on the critical buckling force is investigated. The implications of the obtained results are thoroughly discussed.

Solution of yielding steel arch supports used in mining

  • Lenka Koubova
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.575-586
    • /
    • 2024
  • Steel arch supports are used in mines and underground structures to provide stability. Most of the supports are made up of overlapping arches. They can behave either yieldingly or unyieldingly. If the normal force at any point of overlapping equals the slip resistance, the slide occurs. This paper presents a solution procedure for determining the load-carrying capacity of steel arch supports in the yielding implementation. This solution considers the effects of several significant elements, including differing materials and the number of clamps in yielding friction joints. The direct stiffness method is applied. The solution contains geometric, physical, and structural nonlinearity. The results obtained from numerical modeling using the provided procedure are compared to laboratory tests conducted at GIG Katowice in 2012. They show a good correlation with previously collected data from equivalent laboratory conditions.

A Study on the Development of Tube-to-Support Nonlinear Impact Analysis Model (튜브와 지지대 사이의 비선형 충격해설모델 개발에 관한 연구)

  • 김일곤;박진무
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.515-524
    • /
    • 1995
  • Tubes in heat exchanger of fuel rods in reactor core are supported at intemediate point by support p0lates or springs. Current practice is, in case of heat exchanger, to allow clearance between tube and support plate for design and manufacturing consideration. And in case of fuel rod the clearance in support point can be generated due to the support spring force relaxation. Flow-induced vibration of a tube can cause it to impact or rub against support plate or against adjacent tubes and can result in fretting-wear. The tube-to- support dynamic interaction is used to relate experimental wear data from single-span test rigs to real multi-span heat exchanger configurations. The dynamic interaction cna be measured during experimental wear tests. However, the dynamic interaction is difficult to measure in real heat exchangers and, therefore, analytical techniques are required to estimate this interaction. This paper describels the nonlinear impact model of DAGS(Dynamic Analysis of Gapped Structure) code which simulates the tube response to external sinusodial or step excitation and predicts tube motion and tube-to-support dynamic interaction. Three experimental measurements-two single span rods excited by sinusodial force and a two span rod impacted by a steel ball are compared from the simulation nonlinear model of DAGS code. The simulation results from DAGS code are in good agreement with measurements. Therefore, the developed model of DAGS code is good analytical tool for estimating tube-to-support dynamic interaction in real heat exchangers.

  • PDF

Verification of Effective Support Points of Stern Tube Bearing Using Nonlinear Elastic Multi-Support Bearing Elements (비선형 탄성 다점지지 베어링 요소를 이용한 선미관 베어링의 유효지지점 검증)

  • Choung, Joon-Mo;Choe, Ick-Heung;Kim, Kyu-Chang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.479-486
    • /
    • 2005
  • The final goal of shift alignment design is that the bearing reaction forces or mean pressures are within design boundaries for various service conditions of a ship. However, it is found that calculated bearing load can be substantially variable according to the locations of the effective support points of after sterntube bearing which are determined by simple calculation or assumption suggested by classification societies. A new analysis method for shaft alignment calculation is introduced in order to resolve these problems. Key concept of the new method is featured by adopting both nonlinear elastic and multi-support elements to simulate a bearing support Hertz contact theory is basically applied for nonlinear elastic stiffness calculation instead of the projected area method suggested by most of classification societies. Three loading conditions according to the bearing offset and the hydrodynamic moment and twelve models according to the locations of the effective support points of sterntube bearings are prepared to carry out quantitative verifications for an actual shafting system of 8000 TEU class container vessel. It is found that there is relatively large difference between assumed and calculated effective support points.

Effect of the Rock Characteristics Condition on the Behavior of Tunnel by Numerical Analysis (수치해석에 의한 암반특성의 변화가 터널에 미치는 영향)

  • Kwon, Soon-Sub;Lee, Jong-Sun;Kim, Kyoung-Ho;Lee, Jun-Woo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.375-378
    • /
    • 2007
  • The selection of the support system is an important design parameter in design and construction of the tunnel using the new Australian tunnel method. It is a common practice to select the support based on the rock mass grade, in which the rock mass is classified into five rock groups. The method is applicable if the characteristics of the rock mass are uniform in the direction of tunnel excavation. However, such case is seldom encountered in practice and not applicable when the properties vary along the longitudinal direction. This study performs comprehensive three dimensional finite difference analyses to investigate the ground deformation pattern for cases in which the rock mass properties change in the direction of the tunnel axis. The numerically calculated displacements at the tunnel crown show that the displacement is highly dependent on the stiffness contrast of the rock masses. The results strongly indicate the need to select the support type $0.5\sim1.0D$ before the rock mass boundary. The paper proposes a new guideline for selecting the support type based the results of the analyses.

  • PDF

Effect of Vertical Change of the Rock Mass Characteristics on Rock Mass Classification by Numerical Analysis (암반특성의 수직변화가 암반분류에 미치는 영향에 관한 수치해석적 연구)

  • Kwon, Soon-Sub;Lee, Jong-Sun;Woo, Sung-Won;Lee, Jun-Woo
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.476-479
    • /
    • 2007
  • The selection of the support system is an important design parameter in design and construction of the tunnel using the new Australian tunnel method. It is a common practice to select the support based on the rock mass grade, in which the rock mass is classified into five rock groups. The method is applicable if the characteristics of the rock mass are uniform in the vertical direction. However, such case is seldom encountered in practice and not applicable when the properties vary along the vertical direction. This study performs comprehensive three dimensional finite difference analyses to investigate the ground deformation pattern for cases in which the rock mass properties change in the vertical direction of the tunnel axis. The numerically calculated displacements at the tunnel crown show that the displacement is highly dependent on the stiffness contrast of the rock masses. The results strongly indicate the need to select the support type $0.5{\sim}1.0D$(vertical direction) on the rock mass boundary. The paper proposes a new guideline for selecting the support type based the results of the analyses.

  • PDF