• Title/Summary/Keyword: Support Motion

Search Result 587, Processing Time 0.027 seconds

Multiple Pedestrians Detection using Motion Information and Support Vector Machine from a Moving Camera Image (이동 카메라 영상에서 움직임 정보와 Support Vector Machine을 이용한 다수 보행자 검출)

  • Lim, Jong-Seok;Park, Hyo-Jin;Kim, Wook-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.250-257
    • /
    • 2011
  • In this paper, we proposed the method detecting multiple pedestrians using motion information and SVM(Support Vector Machine) from a moving camera image. First, we detect moving pedestrians from both the difference image and the projection histogram which is compensated for the camera ego-motion using corresponding feature sets. The difference image is simple method but it is not detected motionless pedestrians. Thus, to fix up this problem, we detect motionless pedestrians using SVM The SVM works well particularly in binary classification problem such as pedestrian detection. However, it is not detected in case that the pedestrians are adjacent or they move arms and legs excessively in the image. Therefore, in this paper, we proposed the method detecting motionless and adjacent pedestrians as well as people who take excessive action in the image using motion information and SVM The experimental results on our various test video sequences demonstrated the high efficiency of our approach as it had shown an average detection ratio of 94% and False Positive of 2.8%.

Seismic Fragility Curves for Multi-Span Concrete Bridges (다경간 콘크리트 교량의 지진 취약도)

  • Kim, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.35-47
    • /
    • 2003
  • Seismic ground motion can vary significantly over distances comparable to the length of a majority of highway bridges on multiple supports. This paper presents results of fragility analysis of two actual highway bridges under ground motion with spatial variation. Ground motion time histories are artificially generated with different amplitudes, phases, as well as frequency contents at different support locations. Monte Carlo simulation is performed to study dynamic responses of the bridges under these ground motions. The effect of spatial variation on the seismic response is systematically examined and the resulting fragility curves are compared with those under identical support ground motion. This study shows that ductility demands for the bridge columns can be underestimated if the bridge is analyzed using identical support ground motions rather than differential support ground motions. Fragility curves are developed as functions of different measures of ground motion intensity including peak ground acceleration(PGA), peak ground velocity(PGV), spectral acceleration(SA), spectral velocity(SV) and spectral intensity(SI). This study represents a first attempt to develop fragility curves under spatially varying ground motion and provides information useful for improvement of the current seismic design codes so as to account for the effects of spatial variation in the seismic design of long-span bridges.

Scalable Extension of HEVC for Flexible High-Quality Digital Video Content Services

  • Lee, Hahyun;Kang, Jung Won;Lee, Jinho;Choi, Jin Soo;Kim, Jinwoong;Sim, Donggyu
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.990-1000
    • /
    • 2013
  • This paper describes the scalable extension of High Efficiency Video Coding (HEVC) to provide flexible high-quality digital video content services. The proposed scalable codec is designed on multi-loop decoding architecture to support inter-layer sample prediction and inter-layer motion parameter prediction. Inter-layer sample prediction is enabled by inserting the reconstructed picture of the reference layer (RL) into the decoded picture buffer of the enhancement layer (EL). To reduce the motion parameter redundancies between layers, the motion parameter of the RL is used as one of the candidates in merge mode and motion vector prediction in the EL. The proposed scalable extension can support scalabilities with minimum changes to the HEVC and provide average Bj${\o}$ntegaard delta bitrate gains of about 24% for spatial scalability and of about 21% for SNR scalability compared to simulcast coding with HEVC.

Comparative Analysis of Gait Parameters and Symmetry between Preferred Walking Speed and Walking Speed by using the Froude Number

  • Yoo, Si-Hyun;Kim, Jong-Bin;Ryu, Ji-Seon;Yoon, Suk-Hoon;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.2
    • /
    • pp.221-228
    • /
    • 2016
  • Objective: The purpose of this study was to investigate differences in gait parameters and symmetry between walking speed by using the Froude number and preferred walking speed. Method: Fifty adults (age: $21.0{\pm}1.7years$, body weight: $71.0{\pm}9.2kg$, height: $1.75{\pm}0.07m$, leg length: $0.89{\pm}0.05m$) participated in this study. Leg length-applied walking speed was calculated by using the Froude number, defined as Fr = ${\upsilon}^2$/gL, where v is the velocity, g is the gravitational acceleration, and L is the leg length. Video data were collected by using eight infrared cameras (Oqus 300, Qualysis, Sweden) and the Qualisys Track Manager software (Qualisys, Sweden), with a 200-Hz sampling frequency during two-speed walking (preferred walking speed [PS] and leg length-applied walking speed [LS]) on a treadmill (Instrumented Treadmill, Bertec, USA). The step length, stride length, support percentage, cadence, lower joint angle, range of motion (ROM), and symmetry index were then calculated by using the Matlab R2009a software. Results: Step and stride lengths were greater in LS than in PS (p < 0.05). The right single-support percentage was greater in LS than in PS (p < 0.05). The hip joint angle at heel contact and toe-off were greater in LS than in PS (p < 0.05). The hip and knee joint ROM were greater in LS than in PS (p < 0.05). Conclusion: Based on our findings, we suggest that increased walking speed had a significant effect on step length, stride length, support percentage, and lower joint ROM.

Seismic Response of Arch Structure Subjected to Different Ground Motion (상이한 지반조건을 갖는 아치구조물의 지진응답 분석)

  • Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.1
    • /
    • pp.113-119
    • /
    • 2013
  • Spatial structures have the different dynamic characteristics from general rahmen structures. Therefore, it is necessary to accurately analyze dynamic characteristics and seismic response of spatial structure for seismic design of spatial structure. An arch structure is used as an example structure because it has primary characteristics of spatial structures. Multiple support excitation may be subjected to supports of a spatial structure because ground condition of spatial structures is different. In this study, the response analysis of the arch structure under multiple support excitation and simple support excitation is studied. By means of the pseudo excitation method, the seismic response is analyzed for long span spatial structure. It shows that the structural response is divided into two parts, ground displacement and structural dynamic response due to ground motion excitation. It is known that the seismic response of spatial structure under multiple support excitation and simple support excitation are the different in some case. Therefore, it has to be necessary to analyze the seismic response of spatial structure under multiple support excitation because the spatial structure supports may be different.

Stochastic responses of isolated bridge with triple concave friction pendulum bearing under spatially varying ground motion

  • Yurdakul, Muhammet;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.771-784
    • /
    • 2018
  • This study aims to investigate the stochastic response of isolated and non-isolated highway bridges subjected to spatially varying earthquake ground motion model. This model includes wave passage, incoherence and site response effects. The wave passage effect is examined by using various wave velocities. The incoherency effect is investigated by considering the Harichandran and Vanmarcke coherency model. The site response effect is considered by selecting homogeneous firm, medium and soft soil types where the bridge supports are constructed. The ground motion is described by power spectral density function and applied to each support point. Triple concave friction pendulum (TCFP) bearing which is more effective than other seismic isolation systems is used for seismic isolation. To implement seismic isolation procedure, TCFP bearing devices are placed at each of the support points of the deck. In the analysis, the bridge selected is a five-span featuring cast-in-place concrete box girder superstructure supported on reinforced concrete columns. Foundation supported highway bridge is regarded as three regions and compared its different situation in the stochastic analysis. The stochastic analyses results show that spatially varying ground motion has important effects on the stochastic response of the isolated and non-isolated bridges as long span structures.

Program Development for Vibration Performance Evaluation of Powder Transfer Equipment (분립체 이송장치의 진동 성능평가를 위한 프로그램 개발)

  • Lee Hyoung Woo;Park No Gill
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.170-179
    • /
    • 2004
  • A vibration model of powder transfer equipment is developed by the lumped parameter method. A Powder transfer equipment does surging motion, bouncing motion and pitching motion. Motion equation becomes decoupling and removed vibration exciting source about pitching motion, and therefore designers presented the optimum design plan to be able to do adjustment with motion trajectory of powder transfer equipment. That is, way for design to be able to do motion trajectory of powder transfer equipment through change of design element as installation position and direction of motor, driving speed, mass unbalance, stiffness coefficient and installation position of support coil spring is presented. The design results, powder transfer equipment were able to know that fatigue destruction does not occur, and the reason is because maximum stress working on a basket structure is more very than fatigue strength small.

Depth Camera-Based Posture Discrimination and Motion Interpolation for Real-Time Human Simulation (실시간 휴먼 시뮬레이션을 위한 깊이 카메라 기반의 자세 판별 및 모션 보간)

  • Lee, Jinwon;Han, Jeongho;Yang, Jeongsam
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.1
    • /
    • pp.68-79
    • /
    • 2014
  • Human model simulation has been widely used in various industrial areas such as ergonomic design, product evaluation and characteristic analysis of work-related musculoskeletal disorders. However, the process of building digital human models and capturing their behaviors requires many costly and time-consuming fabrication iterations. To overcome the limitations of this expensive and time-consuming process, many studies have recently presented a markerless motion capture approach that reconstructs the time-varying skeletal motions from optical devices. However, the drawback of the markerless motion capture approach is that the phenomenon of occlusion of motion data occurs in real-time human simulation. In this study, we propose a systematic method of discriminating missing or inaccurate motion data due to motion occlusion and interpolating a sequence of motion frames captured by a markerless depth camera.

Moving Support Elements for Dynamic Finite Element Analysis of Statically Determinate Beams Subjected to Support Motions (지점운동을 받는 정정보의 동해석을 위한 동지점 유한요소 개발)

  • Kim, Yong-Woo;Jhung, Myung Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.555-567
    • /
    • 2013
  • A finite element formulation for a Rayleigh-damped Bernoulli-Euler beam subjected to support motions, which accompanies quasi-static rigid-body motion, is presented by using the quasi-static decomposition method. Moving support beam elements, one of whose nodes is coincident with the moving support, are developed to represent the effect of a moving support. Statically determinate beams subjected to support motions can be modeled successfully by using moving support elements. Examples of cantilever and simply-supported beams subjected to support motions are illustrated, and the numerical results are compared with the analytical solutions. The comparison shows good agreement.

Structural control of cable-stayed bridges under traveling earthquake wave excitation

  • Raheem, Shehata E Abdel
    • Coupled systems mechanics
    • /
    • v.7 no.3
    • /
    • pp.269-280
    • /
    • 2018
  • Post-earthquake damages investigation in past and recent earthquakes has illustrated that the ground motion spatial variation plays an important role in the structural response of long span bridges. For the structural control of seismic-induced vibrations of cable-stayed bridges, it is extremely important to include the effects of the ground motion spatial variation in the analysis for design of an effective control system. The feasibility and efficiency of different vibration control strategies for the cable-stayed bridge under multiple support excitations have been examined to enhance a structure's ability to withstand earthquake excitations. Comparison of the response due to non-uniform input ground motion with that due to uniform input demonstrates the importance of accounting for spatial variability of excitations. The performance of the optimized designed control systems for uniform input excitations gets worse dramatically over almost all of the evaluation criteria under multiple-support excitations.