• Title/Summary/Keyword: Support Electrolyte

Search Result 81, Processing Time 0.026 seconds

Manufacture of SiC matrix for PAFC (인산형 연료전지용 SiC MATRIX 제조)

  • 김영우;이주성
    • Journal of Energy Engineering
    • /
    • v.2 no.2
    • /
    • pp.187-193
    • /
    • 1993
  • Porous matrices to contain and support phosphoric acid were prepared with PTFE as binder and SiC whisker or SiC powders of various particle size for phosphoric acid fuel cell(PAFC). Among the matrix characteristics the most important factors in stack performances were thought to be the bubble pressure and electrolyte wettability And then matrix was constructed to have pore size smaller than that of electrode. The bubble pressures and wettabilities of matrices manufactured with various size of SiC and different PTFE contents were investigated and related with the porosities measured by porosimeter, and then the optimum manufacturing condition of matrix for PAFC was determined.

  • PDF

Comparison among with Nursing Records, Nursing Intervention Priority Perceived by Nurse and Nursing Intervention Frequency of General Surgery Department (일반외과 간호기록에서의 중재, 지각한 간호중재의 중요도 및 수행 빈도)

  • Choi, Eun-Hee;Seo, Ji-Yeong
    • Korean Journal of Adult Nursing
    • /
    • v.21 no.3
    • /
    • pp.349-354
    • /
    • 2009
  • Purpose: The purpose of this study was to determine core nursing intervention in nursing records and to compare perceived nursing intervention priority and nursing intervention frequency of general surgery department. Methods: Subjects were 70 nurses who work in the general surgery department. Data was collected using a nursing intervention classification and analyzed by frequency and mean. Results: The most frequent nursing interventions of nursing records were orderly risk management, coping assistance, tissue perfusion management, skin/wound management and nutrition support. Important nursing interventions were tissue perfusion management, respiratory management, electrolyte acid-base management, elimination, peri-operative care. The most frequent nursing interventions were drug management, peri-operative care, risk management, tissue perfusion management, patient education. Conclusion: This study found that nursing records were different from intervention priority and nursing frequency. So further study is needed for finding focused intervention of specific subjects and differences with priority of nursing and frequency of nursing.

  • PDF

Fabrication of YSZ-based Micro Tubular SOFC Single Cell using Electrophoretic Deposition Process

  • Yu, Seung-Min;Lee, Ki-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.315-319
    • /
    • 2015
  • Yttria-stabilized zirconia (YSZ)-based micro tubular SOFC single cells were fabricated by electrophoretic deposition (EPD) process. Stable slurries for the EPD process were prepared by adding phosphate ester (PE) as a dispersant in order to control the pH, conductivity, and zeta-potential. NiO-YSZ anode support, NiO-YSZ anode functional layer (AFL), and YSZ electrolyte were consecutively deposited on a graphite rod using the EPD process; materials were then co-sintered at $1400^{\circ}C$ for 4 h. The thickness of the deposited layer increased with increasing of the applied voltage and the deposition time. A YSZ-based micro tubular single cell fabricated by the EPD process exhibited a maximum power density of $0.3W/cm^2$ at $750^{\circ}C$.

Concept, Manufacture and Results of the Microtubular Solid Oxide Fuel Cell

  • Sammes, Nigel;Galloway, Kevin;Yamaguchi, Toshiaki;Serincan, Mustafa
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • This paper summarized concept, manufacture and results of the micro-tubular solid oxide fuel cells (SOFCs). The cells were fabricated by co-sintering of extruded micro-tubular anode support and electrolyte coating layer, and then additional cathode coating. The cells showed quick voltage rising within 1 minute, and the electrochemical performances were closely related to the balance of fuel utilization and performance loss. And a thermal-fluid simulation model was also reported in combination with the electrochemical evaluation results on the GDC-based micro-tubular SOFCs.

Emergence of MXenes for Fuel Cell (연료전지용 MXenes의 등장)

  • Manoj Karakoti;Sang Yong Nam
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.99-105
    • /
    • 2023
  • Recently, 2D materials greatly impact in the various applications especially in the energy conversion and storage devices. Among the 2D materials, nowadays researchers are showing their propensity towards the MXenes due to their potential structural and physical properties as well as their use in various applications. Recently, MXenes have been used as filler in polymer electrolytes membranes and as catalytic support to increase the performance of fuel cells (FCs). But this review covers only recent progress and application of MXenes in proton and anion exchange membranes for FCs. Also, this review will provide a significant guidance and broad overview for future research in MXenes based polymer electrolyte membrane for FCs.

Effect of various MEA fabrication methods on the PEMFC durability testing at high and low humidity conditions (MEA 제조 방법에 따른 상대습도 변화가 PEMFC 내구성에 미치는 영향)

  • Kim, Kun-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.86.2-86.2
    • /
    • 2010
  • In order to improve polymer electrolyte membrane fuel cell (PEMFC) durability, the durability of membrane electrode assemblies (MEA), in which the electrochemical reactions actually occur, is one of the vital issues. Many articles have dealt with catalyst layer degradation of the durability-related factors on MEAs in relation to loss of catalyst surface area caused by agglomeration, dissolution, migration, formation of metal complexes and oxides, and/or instability of the carbon support. Degradation of catalyst layer during long-term operation includes cracking or delamination of the layer which result either from change in the catalyst microstructure or loss of electronic or ionic contact with the active surface, can result in apparent activity loss in the catalyst layer. Membrane degradation of the durability-related factors on MEAs can be caused by mechanical or thermal stress resulting in formation of pinholes and tears and/or by chemical attack of hydrogen peroxide radicals formed during the electrochemical reactions. All of these effects, the mechanical damage of membrane and degradation of catalyst layers are more facilitated by uneven stress or improper MEA fabrication process. In order to improve the PEMFC durability, therefore, it is most important to minimize the uneven stress or improper MEA fabrication process in the course of the fabrication of MEA. We analyzed the effects of the MEA fabrication condition on the PEMFC durability with MEA produced using CCM (catalyst coated membrane) method. This paper also investigated the effects of MEA fabrication condition on the PEMFC durability by adding additional treatment process, hot pressing and pressing, on the MEA produced using CCM method.

  • PDF

The Properties of the Manufactured SOFC Unit Cell using Decalcomania Method (전사법을 이용하여 제조한 SOFC 단전지의 특성 분석)

  • Lee, Mi-Jai;Kim, Bit-Nan;Lim, Tae-Young;Kim, Sei-Ki;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.520-524
    • /
    • 2011
  • The properties of manufactured SOFC unit cell using decalcomania method were investigated. The decalcomania method that used in ceramics, dish, vessel and etc. was the very simple process. The SOFC unit cell manufacturer using decalcomania method is very simple process. Especially, the decalcomania method was the most suitable manufacturing method for the segmented type SOFC. The cathode, prevent diffusion layer (PDL), anode functional layer (AFL) and electrolyte were manufactured using decalcomania method on porous anode support. The sintered electrolyte at 1450$^{\circ}C$ for 2 h using decalcomania method was very dense, and the thickness was about 10 ${\mu}m$. The cathode, the PDL and the AFL were manufactured using decalcomania method and was sintered at 1250$^{\circ}C$ for 2 h, and the sintered electrodes were the porous. As a result, with humidified hydrogen used as fuel, the cell with an 15 ${\mu}m$-thick AFL exhibited maximum power densities of 0.246, 0.364, 0.504W/$cm^2$ at 700, 750, 800$^{\circ}C$, respectively.

Optimum Ratio between Nafion and 20, 40 wt% Pt/C Catalysts for MEAs (20, 40 wt% Pt/C 촉매를 사용한 MEA제조에서 나피온의 최적비)

  • Jung, Ju-Hae;Jung, Dong-Won;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.1
    • /
    • pp.50-55
    • /
    • 2011
  • To enhance the performance of a MEA (membrane electrode assembly) in a polymer electrolyte membrane fuel cell (PEMFC), optimum contents of Nafion ionomer as electrolyte in the 20 and 40 wt% Pt/C used in electrodes were examined. Variety characterization techniques were applied to examine optimum Nafion contents: cell performance test, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). According to Pt wt% supported on carbon support, it has been observed that polarization, ohmic, and mass transfer resistances were changed so that the cell performance was significantly dependent on the content of Nafion ionomer. Optimum Nafion ionomer contents in the 20 wt% Pt/C and 40 wt% Pt/C were showed 35 wt% and 20 wt%, respectively. This is due to different surface area of the Pt/C catalyst, and formation of triple phase boundary seems to be affected by the Nafion contents.

Evaluation of Machining Characteristics and Performance Analysis of Air-Lubricated Dynamic Bearing (공기동압베어링의 성능 해석 및 가공특성 평가)

  • Baek, Seung-Yub;Kim, Kwang-Lae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5412-5419
    • /
    • 2011
  • The need is growing for high-speed spindle because various equipment are becoming more precise, miniaturization and high speed with the development of industries. Air-lubricated dynamic bearings are widely used in the optical lithographic manufacturing of wafers to realize nearly zero friction for the motion of the stage. Air-lubricated dynamic bearing can be used in high-speed, high-precision spindle system and hard disk drive(HDD) because of its advantages such as low frictional loss, low heat generation, averaging effect leading better running accuracy. In the paper, numerical analysis is undertaken to calculate the performance of air-lubricated dynamic bearing with herringbone groove. The static performances of herringbone groove bearings which can be used to support the thrust load are calculated. Electrochemical micro machining($EC{\mu}M$) which is non-contact ultra precision machining method has been developed to fabricate the air-lubricated dynamic bearing and optimum parameters which are inter electrode gap size, concentration of electrolyte, machining time are simulated using numerical analysis program.

Preparation of Pt Catalysts Supported on ACF with CNF via Catalytic Growth

  • Park, Sang-Sun;Rhee, Jun-Ki;Jeon, Yu-Kwon;Choi, Sung-Won;Shul, Yong-Gun
    • Carbon letters
    • /
    • v.11 no.1
    • /
    • pp.38-40
    • /
    • 2010
  • Carbon supported electrocatalysts are commonly used as electrode materials for polymer electrolyte membrane fuel cells(PEMFCs). These kinds of electrocatalysts provide large surface area and sufficient electrical conductivity. The support of typical PEM fuel cell catalysts has been a traditional conductive type of carbon black. However, even though the carbon particles conduct electrons, there is still significant portion of Pt that is isolated from the external circuit and the PEM, resulting in a low Pt utilization. Herein, new types of carbon materials to effectively utilize the Pt catalyst are being evaluated. Carbon nanofiber/activated carbon fiber (CNF/ACF) composite with multifunctional surfaces were prepared through catalytic growth of CNFs on ACFs. Nickel nitrate was used as a precursor of the catalyst to synthesize carbon nanofibers(CNFs). CNFs were synthesized by pyrolysising $CH_4$ using catalysts dispersed in acetone and ACF(activated carbon fiber). The as-prepared samples were characterized with transmission electron microscopy(TEM), scanning electron microscopy(SEM). In TEM image, carbon nanofibers were synthesized on the ACF to form a three-dimensional network. Pt/CNF/ACF was employed as a catalyst for PEMFC. As the ratio of prepared catalyst to commercial catalyst was changed from 0 to 50%, the performance of the mixture of 30 wt% of Pt/CNF/ACF and 70wt% of Pt/C commercial catalyst showed better perfromance than that of 100% commercial catalyst. The unique structure of CNF can supply the significant site for the stabilization of Pt particles. CNF/ACF is expected to be promising support to improve the performance in PEMFC.