• 제목/요약/키워드: Supply angle

검색결과 205건 처리시간 0.024초

급기각도가 사무실 공간의 냉방 및 난방 성능에 미치는 영향 (The Effect of Supply Angle on Cooling and Heating Performances of Office Space)

  • 김묘선;김영일;정광섭
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.497-501
    • /
    • 2009
  • Effect of angle of supply air on cooling and heating performances of office space is studied by numerical simulation. For a constant air volume(CAV) air-conditioning system, air is supplied vertically($90^{\circ}$) and horizontally($10^{\circ}$). Due to buoyancy, the supply angle affects the performance of cooling and heating. In cooling, since the cold supply air tends to move downward due to its high density, horizontal supply angle is better for uniform temperature distribution. In heating, however, vertical supply angle is preferred for better mean and uniform temperature distribution.

  • PDF

열원이 있는 밀폐된 선박 기관실에서의 난류기류에 관한 수치적 연구 (Numerical simulation of turbulent air-flow in a closed engine room with heat source in a ship)

  • 박찬수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권1호
    • /
    • pp.100-107
    • /
    • 1998
  • Ventilation of the marine engine room is very important for the health of the workers as well as the nomal operation of machines. To find proper ventilation conditions of this engine room, numerical simulation with standard k-.epsilon. model was carried out. In the present study, the marine engine room is considered as a closed space with a heat source and forced ventilation ducts. The injection angle of air supply is found to be important. Injection with downword angle depresses recirculation flow, causing a strong steam in the wider space of the room. Ventilation and removal of the released heat are promoted with this pattern. There is a possibility of local extreme heating at the upper surface of engine when supply and exhaust ports of air are in bilateral symmetry. The effect of the increase of exhaust port area on ventilation decreases as the number of supply port increases.

  • PDF

엔진 경사 조건이 오일 공급 시스템에 미치는 영향 (The Effect of Engine Tilting Conditions on the Oil Supply System)

  • 전문수;김숭기;박병완
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.37-43
    • /
    • 2004
  • Engine lubrication system is generally affected by vehicle driving conditions; acceleration, braking deceleration, and cornering. The oil supply system such as oil pan, baffle plate, and oil pick-up pipe should be optimized to cope with severe driving conditions. The main purpose of this paper is to understand the effect of the engine tilting angle on the oil supply system using engine tilting test rig. For the purpose, the oil pressure fluctuation and oil aeration in the main gallery are measured at various engine tilting angles. In addition, the oil flow is visualized by using transparent oil pan to investigate the cause of the formation of oil aeration. The test results show there is a strong correlation between the main gallery oil pressure fluctuation and oil aeration. It is also found that the visualization technique is helpful to stabilize the oil supply system at severe driving conditions.

일정 열유속의 열원을 갖는 사각공간의 혼합대류 열전달 (Heat transfer of Mixed convection in rectangular space with constant heat flux)

  • 조대환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권4호
    • /
    • pp.552-558
    • /
    • 1999
  • Ventilation of the marine engine room is very important for the health of the workers as well as the normal operation of machines. To find proper ventilation conditions of this engine room numerical simulation with a standard k-$\varepsilon$model was carried out. In the present study the marine engine room is considered as a closed space with a heat source and forced ventilation ducts. The injection angle of air supply is found to be important. Injection with a downward angle depresses recirculation flow causing a strong stream in the wider space of the room Ventilation and removal of the released heat are promoted with this pattern, There is a possibility of local extreme heating at the upper surface of the engine when supply and exhaust ports of air are in bilateral symmetry.

  • PDF

A Study on the Adjusting Output Energy of the $CO_2$ Laser Controlled Directly in AC Power Line

  • Noh, Ki-Kyong;Jeong, Jong-Jin;Chung, Hyun-Ju;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권4호
    • /
    • pp.152-154
    • /
    • 2005
  • We demonstrate a simple $CO_2$ laser by controlling firing angle of a TRIAC switch in ac power line. The power supply for our laser system switches the voltage of the AC power line (60Hz) directly. The power supply does not need elements such as a rectifier bridge, energy-storage capacitors, or a current-limiting resistor in the discharge circuit. In order to control the laser output power, the pulse repetition rate is adjusted up to 60Hz and the firing angle of TRIAC gate is varied from $45^{circ}$ to $135^{circ}$. A ZCS(Zero Crossing Switch) circuit and a PIC one-chip microprocessor are used to control the gate signal of the TRIAC precisely. The maximum laser output of 40W is obtained at a total pressure of 18 Torr, a pulse repetition rate of 60Hz, and a TRAIC gate firing angle of $90^{circ}$.

수처리 시설물에 적용되는 섬유패널 배면부의 입체 성형 각도에 따른 부착 성능 연구 (A Study on the Adhesion Performance of Solid Forming Angle at Fiber Panel in the Water Supply Facility)

  • 윤준노;박완구;최수영;김동범;김병일;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 추계 학술논문 발표대회
    • /
    • pp.171-172
    • /
    • 2018
  • The purpose of this study is to confirm the adhesion performance of the three - dimensional forming fiber panels by the dimensional forming angle. As a result of applying the three dimensional surface shape to the back side of the fiber panel and testing the adhesion strength by the three dimensional forming angle, it was confirmed that the bonding strength of the specimens to which the dimensional molding was applied was higher than that of the non dimensional molding. In addition, the highest adhesion strength was confirmed in a specimen having a three-dimensional forming angle of 70 °.

  • PDF

Motion Behavior of Platform Supply Vessels Running Under Regular Wave Conditions in RANS Model

  • Park, Huiseung;Jang, Hoyun;Ahn, Namhyun;Yoon, Hyunsik
    • 해양환경안전학회지
    • /
    • 제25권3호
    • /
    • pp.366-372
    • /
    • 2019
  • This study performed a numerical analysis of a 3D unsteady viscous flow in order to investigate ship motion responses running through regular waves of the platform supply vessel. The feasibility of numerical analysis was tested under the three regular wave conditions of the KRISO container ship (KCS) suggested at the 2010 Gothenburg CFD Workshop. The resulting resistance coefficient, heave motion, and pitch angle were compared with the model test of the harmonic analysis. Also, the ship motion response characteristics of the platform supply vessel were performed using the proven method of the KRISO container ship (KCS). The ship motions including the resistance coefficient, heave motion, and pitch angle according to the time series were investigated via harmonic analysis under regular waves condition of ${\lambda}/LPP=1.87$ and $H_S=0.078m$.

사각 천장형 루버 디퓨저의 토출 각도에 따른 실내유동에 관한 연구 (Study on Indoor Flow According to Vane Angle of Square Ceiling Type Louver Diffuser)

  • 장헌덕;이대희;이진호
    • 대한기계학회논문집B
    • /
    • 제36권7호
    • /
    • pp.683-687
    • /
    • 2012
  • 본 연구는 CFD 해석을 이용하여 사각 천장형 루버 디퓨저의 토출각도와 토출 유량에 따른 실내 공기유동 특성에 관한 것이다. CFD 툴은 상용프로그램인 ANSYS 13.0의 CFX를 이용하였다. 연구에 사용된 디퓨저는 적은 유량에서도 충분한 도달거리를 확보할 수 있도록 모델링하였으며, 실내 크기는 $6{\times}6{\times}2.7m$로 디퓨저의 대각선 방향으로 원형 배기구를 모델링 하였다. 토출 공기의 체적유량은 5.1CMM, 7.4CMM이며, 디퓨저의 토출각도를 $30^{\circ}$에서부터 $60^{\circ}$까지 $10^{\circ}$씩 변화하여 실내의 유동특성에 대하여 고찰하였다.

교류전기철도 병렬급전 운영을 위한 위상조정장치 제어기법 (A Control Method of Phase Angle Regulator for Parallel-Feeding Operation of AC Traction Power Supply System)

  • 이병복;최규형
    • 한국산학기술학회논문지
    • /
    • 제21권5호
    • /
    • pp.672-678
    • /
    • 2020
  • 교류전기철도 급전시스템에 병렬급전방식을 적용할 경우, 전동차 부하로 인한 전압강하 및 최대순시부하를 감소시켜 급전구간을 연장하고 급전용량을 향상시킬 수 있다는 장점이 있다. 그러나 변전소 간에 위상차가 있을 경우 순환전력이 발생하기 때문에 적용이 제한되며, 전동차 운행에 따른 부하 분포에 따라 변전소 부하 불균형이 커져서 급전용량이 저하되는 문제점이 있다. 본 논문에서는 변전소 위상차 및 전동차 부하분포에 따라 변동하는 순환전력을 실시간 제어하고 변전소 부하 불균형을 해소하기 위하여 사이리스터 제어 위상조정장치 (TCPAR: Thyristor Controlled Phase Angle Regulator, 이하 TCPAR)를 적용하는 방식을 제안하고, 이를 구현하기 위한 검토를 수행하였다. 전기철도 급전 시스템에 TCPAR을 적용하기 위한 제어 기법으로서, 변전소 공급전력을 입력으로 이용하여 변전소 위상차 및 전동차 부하 분포에 따라 변동하는 순환전력과 변전소 부하 불균형을 효과적으로 억제하는 제어모델을 제시하였다. PSCAD/EMTDC를 이용한 시뮬레이션 결과, 전기철도 병렬급전에 제안한 TCPAR을 적용함으로써 변전소 위상차 및 전동차 부하분포에 따라 변동하는 순환전력 및 변전소 부하 불균형을 효과적으로 억제시킬 수 있다는 것을 확인하였다. 제안 기법을 전기철도 병렬급전에 적용할 경우, 병렬급전 적용 범위를 확대하고 급전용량을 증가시킬 수 있을 것으로 기대된다.

Frequency Synchronization of Three-Phase Grid-Connected Inverters Controlled as Current Supplies

  • Fu, Zhenbin;Feng, Zhihua;Chen, Xi;Zheng, Xinxin;Yin, Jing
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1347-1356
    • /
    • 2018
  • In a three-phase system, three-phase AC signals can be translated into two-phase DC signals through a coordinate transformation. Thus, the PI regulator can realize a zero steady-state error for the DC signals. In the control of a three-phase grid-connected inverter, the phase angle of grid is normally detected by a phase-locked loop (PLL) and takes part in a coordinate transformation. A novel control strategy for a three-phase grid-connected inverter with a frequency-locked loop (FLL) based on coordinate transformation is proposed in this paper. The inverter is controlled as a current supply. The grid angle, which takes part in the coordinate transformation, is replaced by a periodic linear changing angle from $-{\pi}$ to ${\pi}$. The changing angle has the same frequency but a different phase than the grid angle. The frequency of the changing angle tracks the grid frequency by the negative feedback of the reactive power, which forms a FLL. The control strategy applies to non-ideal grids and it is a lot simpler than the control strategies with a PLL that are applied to non-ideal grids. The structure of the FLL is established. The principle and advantages of the proposed control strategy are discussed. The theoretical analysis is confirmed by experimental results.