• Title/Summary/Keyword: Supervised learning algorithm

Search Result 255, Processing Time 0.021 seconds

Performance Analysis of MixMatch-Based Semi-Supervised Learning for Defect Detection in Manufacturing Processes (제조 공정 결함 탐지를 위한 MixMatch 기반 준지도학습 성능 분석)

  • Ye-Jun Kim;Ye-Eun Jeong;Yong Soo Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.312-320
    • /
    • 2023
  • Recently, there has been an increasing attempt to replace defect detection inspections in the manufacturing industry using deep learning techniques. However, obtaining substantial high-quality labeled data to enhance the performance of deep learning models entails economic and temporal constraints. As a solution for this problem, semi-supervised learning, using a limited amount of labeled data, has been gaining traction. This study assesses the effectiveness of semi-supervised learning in the defect detection process of manufacturing using the MixMatch algorithm. The MixMatch algorithm incorporates three dominant paradigms in the semi-supervised field: Consistency regularization, Entropy minimization, and Generic regularization. The performance of semi-supervised learning based on the MixMatch algorithm was compared with that of supervised learning using defect image data from the metal casting process. For the experiments, the ratio of labeled data was adjusted to 5%, 10%, 25%, and 50% of the total data. At a labeled data ratio of 5%, semi-supervised learning achieved a classification accuracy of 90.19%, outperforming supervised learning by approximately 22%p. At a 10% ratio, it surpassed supervised learning by around 8%p, achieving a 92.89% accuracy. These results demonstrate that semi-supervised learning can achieve significant outcomes even with a very limited amount of labeled data, suggesting its invaluable application in real-world research and industrial settings where labeled data is limited.

Semi-supervised Learning for the Positioning of a Smartphone-based Robot (스마트폰 로봇의 위치 인식을 위한 준 지도식 학습 기법)

  • Yoo, Jaehyun;Kim, H. Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.565-570
    • /
    • 2015
  • Supervised machine learning has become popular in discovering context descriptions from sensor data. However, collecting a large amount of labeled training data in order to guarantee good performance requires a great deal of expense and time. For this reason, semi-supervised learning has recently been developed due to its superior performance despite using only a small number of labeled data. In the existing semi-supervised learning algorithms, unlabeled data are used to build a graph Laplacian in order to represent an intrinsic data geometry. In this paper, we represent the unlabeled data as the spatial-temporal dataset by considering smoothly moving objects over time and space. The developed algorithm is evaluated for position estimation of a smartphone-based robot. In comparison with other state-of-art semi-supervised learning, our algorithm performs more accurate location estimates.

A Label Inference Algorithm Considering Vertex Importance in Semi-Supervised Learning (준지도 학습에서 꼭지점 중요도를 고려한 레이블 추론)

  • Oh, Byonghwa;Yang, Jihoon;Lee, Hyun-Jin
    • Journal of KIISE
    • /
    • v.42 no.12
    • /
    • pp.1561-1567
    • /
    • 2015
  • Abstract Semi-supervised learning is an area in machine learning that employs both labeled and unlabeled data in order to train a model and has the potential to improve prediction performance compared to supervised learning. Graph-based semi-supervised learning has recently come into focus with two phases: graph construction, which converts the input data into a graph, and label inference, which predicts the appropriate labels for unlabeled data using the constructed graph. The inference is based on the smoothness assumption feature of semi-supervised learning. In this study, we propose an enhanced label inference algorithm by incorporating the importance of each vertex. In addition, we prove the convergence of the suggested algorithm and verify its excellence.

Dam Sensor Outlier Detection using Mixed Prediction Model and Supervised Learning

  • Park, Chang-Mok
    • International journal of advanced smart convergence
    • /
    • v.7 no.1
    • /
    • pp.24-32
    • /
    • 2018
  • An outlier detection method using mixed prediction model has been described in this paper. The mixed prediction model consists of time-series model and regression model. The parameter estimation of the prediction model was performed using supervised learning and a genetic algorithm is adopted for a learning method. The experiments were performed in artificial and real data set. The prediction performance is compared with the existing prediction methods using artificial data. Outlier detection is conducted using the real sensor measurements in a dam. The validity of the proposed method was shown in the experiments.

Estimating Regression Function with $\varepsilon-Insensitive$ Supervised Learning Algorithm

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.477-483
    • /
    • 2004
  • One of the major paradigms for supervised learning in neural network community is back-propagation learning. The standard implementations of back-propagation learning are optimal under the assumptions of identical and independent Gaussian noise. In this paper, for regression function estimation, we introduce $\varepsilon-insensitive$ back-propagation learning algorithm, which corresponds to minimizing the least absolute error. We compare this algorithm with support vector machine(SVM), which is another $\varepsilon-insensitive$ supervised learning algorithm and has been very successful in pattern recognition and function estimation problems. For comparison, we consider a more realistic model would allow the noise variance itself to depend on the input variables.

  • PDF

Active Selection of Label Data for Semi-Supervised Learning Algorithm (준감독 학습 알고리즘을 위한 능동적 레이블 데이터 선택)

  • Han, Ji-Ho;Park, Eun-Ae;Park, Dong-Chul;Lee, Yunsik;Min, Soo-Young
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.254-259
    • /
    • 2013
  • The choice of labeled data in semi-supervised learning algorithm can result in effects on the performance of the resultant classifier. In order to select labeled data required for the training of a semi-supervised learning algorithm, VCNN(Vector Centroid Neural Network) is proposed in this paper. The proposed selection method of label data is evaluated on UCI dataset and caltech dataset. Experiments and results show that the proposed selection method outperforms conventional methods in terms of classification accuracy and minimum error rate.

Semi-Supervised Learning Using Kernel Estimation

  • Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.629-636
    • /
    • 2007
  • A kernel type semi-supervised estimate is proposed. The proposed estimate is based on the penalized least squares loss and the principle of Gaussian Random Fields Model. As a result, we can estimate the label of new unlabeled data without re-computation of the algorithm that is different from the existing transductive semi-supervised learning. Also our estimate is viewed as a general form of Gaussian Random Fields Model. We give experimental evidence suggesting that our estimate is able to use unlabeled data effectively and yields good classification.

  • PDF

ART1-based Fuzzy Supervised Learning Algorithm (ART-1 기반 퍼지 지도 학습 알고리즘)

  • Kim Kwang-Baek;Cho Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.4
    • /
    • pp.883-889
    • /
    • 2005
  • Error backpropagation algorithm of multilayer perceptron may result in local-minima because of the insufficient nodes in the hidden layer, inadequate momentum set-up, and initial weights. In this paper, we proposed the ART-1 based fuzzy supervised learning algorithm which is composed of ART-1 and fuzzy single layer supervised learning algorithm. The Proposed fuzzy supervised learning algorithm using self-generation method applied not only ART-1 to creation of nodes from the input layer to the hidden layer, but also the winer-take-all method, modifying stored patterns according to specific patterns. to adjustment of weights. We have applied the proposed learning method to the problem of recognizing a resident registration number in resident cards. Our experimental result showed that the possibility of local-minima was decreased and the teaming speed and the paralysis were improved more than the conventional error backpropagation algorithm.

Implementing a Branch-and-bound Algorithm for Transductive Support Vector Machines

  • Park, Chan-Kyoo
    • Management Science and Financial Engineering
    • /
    • v.16 no.1
    • /
    • pp.81-117
    • /
    • 2010
  • Semi-supervised learning incorporates unlabeled examples, whose labels are unknown, as well as labeled examples into learning process. Although transductive support vector machine (TSVM), one of semi-supervised learning models, was proposed about a decade ago, its application to large-scaled data has still been limited due to its high computational complexity. Our previous research addressed this limitation by introducing a branch-and-bound algorithm for finding an optimal solution to TSVM. In this paper, we propose three new techniques to enhance the performance of the branch-and-bound algorithm. The first one tightens min-cut bound, one of two bounding strategies. Another technique exploits a graph-based approximation to a support vector machine problem to avoid the most time-consuming step. The last one tries to fix the labels of unlabeled examples whose labels can be obviously predicted based on labeled examples. Experimental results are presented which demonstrate that the proposed techniques can reduce drastically the number of subproblems and eventually computational time.

High Efficiency Adaptive Facial Expression Recognition based on Incremental Active Semi-Supervised Learning (점진적 능동준지도 학습 기반 고효율 적응적 얼굴 표정 인식)

  • Kim, Jin-Woo;Rhee, Phill-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.165-171
    • /
    • 2017
  • It is difficult to recognize Human's facial expression in the real-world. For these reason, when database and test data have similar condition, we can accomplish high accuracy. Solving these problem, we need to many facial expression data. In this paper, we propose the algorithm for gathering many facial expression data within various environment and gaining high accuracy quickly. This algorithm is training initial model with the ASSL (Active Semi-Supervised Learning) using deep learning network, thereafter gathering unlabeled facial expression data and repeating this process. Through using the ASSL, we gain proper data and high accuracy with less labor force.