• Title/Summary/Keyword: Supervised clustering

Search Result 115, Processing Time 0.026 seconds

Gene ontology based semi-supervised clustering method (유전자 온톨로지를 활용한 반지도 클러스터링 기법)

  • Go, Song;Kim, Dae-Won
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.183-187
    • /
    • 2008
  • 본 논문은 유전자의 기능이 비슷한 정도에 따른 사전정보의 값을 부여하며, 클러스터링시 사전정보를 활용할 수 있는 방법을 제시한다. 실세계 문제인 유전자는 각기 다양한 기능을 하는 특징적인 것으로 사전정보의 형태를 1과 0등으로 구분하던 과거의 방식으로는 정의하기가 어렵다. 유전자간의 비슷한 정도에 따라 사전정보의 값이 정해져야 하는 것은 필요하며, 이는 생물학자가 구축해놓은 유전자 온톨로지의 분석을 통하여 산출한다. 유전자 온톨로지는 기능별 카테고리로 분류하며, 세부 기능은 하위의 카테고리로 형성된 거대한 트리 구조의 형태를 띤다. 온톨로지 분석을 통해 형성된 사전정보의 값은 0과 1사이의 연속적인 값으로 형성이 되며, 이 값은 클러스터링 과정 중 거리 계산에 활용함으로써, 그 결과의 성능이 우수함을 보인다.

  • PDF

Identifying Temporal Pattern Clusters to Predict Events in Time Series

  • Heesoo Hwang
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.125-134
    • /
    • 2002
  • This paper proposes a method for identifying temporal pattern clusters to predict events in time series. Instead of predicting future values of the time series, the proposed method forecasts specific events that may be arbitrarily defined by the user. The prediction is defined by an event characterization function, which is the target of prediction. The events are predicted when the time series belong to temporal pattern clusters. To identify the optimal temporal pattern clusters, fuzzy goal programming is formulated to combine multiple objectives and solved by an adaptive differential evolution technique that can overcome the sensitivity problem of control parameters in conventional differential evolution. To evaluate the prediction method, five test examples are considered. The adaptive differential evolution is also tested for twelve optimization problems.

  • PDF

A Topic Classification System in cQA Services Based on Semi-Automatic Learning Using Wikipedia (위키피디아를 이용한 반자동 학습 기반의 cQA 서비스 주제 분류 시스템)

  • Kim, Taehyun
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.139-141
    • /
    • 2015
  • 본 논문은 커뮤니티 기반의 질의-응답 서비스에서 사용자 질의의 주제를 분류하는 시스템을 소개한다. 커뮤니티 기반의 질의-응답 서비스는 분야에 따라 다양한 주제를 가질 수 있으며 오늘 날 사용자 질의의 주제 분류에는 통계 기반의 분류 방법이 많이 이용되고 있다. 통계 기반의 분류 방법으로 사용자 질의를 분류하기 위해서는 주제에 적합한 대량의 학습 말뭉치가 필요하다. 주제에 적합한 대량의 학습 말뭉치를 사람이 직접 구축하는 것은 많은 시간과 비용이 든다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 위키피디아 문서를 Supervised K-means Clustering 기법으로 주제별로 분류함으로써 학습 말뭉치를 반자동으로 구축하는 방법을 제안한다. 그 다음, 생성된 학습 말뭉치로 지지 벡터 기계를 학습하여 사용자 질의의 주제를 분류하게 된다. 위키피디아 문서와 사용자 질의는 다른 도메인의 문서임에도 불구하고 본 논문의 시스템으로 사용자 질의의 주제를 분류한 결과 77.33%의 정확도를 보였다.

  • PDF

A Study on Improving Performance of Supervised Classifier using ISODATA and Fuzzy C-Means Clustering Method (ISODATA와 퍼지 C-Means를 이용한 감독 분류의 성능 향상에 관한 연구)

  • 전영준;김진일
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.79-81
    • /
    • 2003
  • 본 논문에서는 위성영상의 강독 분류에 대한 성능 개선을 위하여 ISODATA와 퍼지 C-Means 클러스터링 기법을 이용한 베이시안 최대우도 분류방법을 제안하였다. 본 연구에서는 ISODATA 클러스터링 기법을 이용하여 각각의 분류항목별로 분광특징에 따라 분석가가 선정한 훈련 데이터를 분할하여 새로운 훈련 데이터를 선정함으로써 분류항목별 훈련데이터의 분광적인 특징에 관계없이 분류를 수행할 수 있도록 하였다. 그리고 새롭게 선정된 훈련 데이터를 이용하여 퍼지 C-Means 클러스터링을 수행하고 그 결과를 베이시안 최대우도 분류기법의 사전확률로 이용함으로써 위성영상의 감독 분류에 대한 성능을 개선할 수 있는 방법을 제안한다. 제안된 기법은 Landset TM 위성영상을 이용하여 그 적용성을 시험하였다.

  • PDF

The cluster-indexing collaborative filtering recommendation

  • Park, Tae-Hyup;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.400-409
    • /
    • 2003
  • Collaborative filtering (CF) recommendation is a knowledge sharing technology for distribution of opinions and facilitating contacts in network society between people with similar interests. The main concerns of the CF algorithm are about prediction accuracy, speed of response time, problem of data sparsity, and scalability. In general, the efforts of improving prediction algorithms and lessening response time are decoupled. We propose a three-step CF recommendation model which is composed of profiling, inferring, and predicting steps while considering prediction accuracy and computing speed simultaneously. This model combines a CF algorithm with two machine learning processes, SOM (Self-Organizing Map) and CBR (Case Based Reasoning) by changing an unsupervised clustering problem into a supervised user preference reasoning problem, which is a novel approach for the CF recommendation field. This paper demonstrates the utility of the CF recommendation based on SOM cluster-indexing CBR with validation against control algorithms through an open dataset of user preference.

  • PDF

Tool Wear Monitoring in Milling Operation Using ART2 Neural Network (ART2 신경회로망을 이용한 밀링공정의 공구마모 진단)

  • Yoon, Sun-Il;Ko, Tae-Jo;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.120-129
    • /
    • 1995
  • This study introduces a tool wear monitoring technology in face milling operation comprised of an unsupervised neural network. The monitoring system employs two types of sensor signal such as cutting force and acceleration in sensory detection state. The RMS value and band frequency energy of the sensor signals are calculated for te input patterns of neural network. ART2 neural network, which is capable of self organizing without supervised learning, is used for clustering of tool wear states. The experimental results show that tool wear can be effectively detected under various cutting conditions without prior knowledge of cutting processes.

  • PDF

Diabetes Predictive Analytics using FCM Clustering based Supervised Learning Algorithm (FCM 클러스터링 기반 지도 학습 알고리즘을 이용한 당뇨병 예측 분석)

  • Park, Tae-eun;Kim, Kwang-baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.580-582
    • /
    • 2022
  • 본 논문에서는 데이터를 정량화하여 특징을 분류하기 위한 방법으로 퍼지 클러스터링 기반 지도 학습 방법을 제안한다. 제안된 방법은 FCM 클러스터링을 기법을 적용하여 군집화를 수행한다. 그리고 군집화 된 데이터들 중에서는 정확히 분류되지 않은 데이터가 존재하므로 분류되지 않은 데이터에 대해 지도 학습 방법을 적용한다. 본 논문에서는 당뇨병의 유무를 타겟 데이터로 설정하고 나머지 8개의 속성의 데이터를 FCM 기반 지도 학습 방법을 적용하여 당뇨병의 유무를 예측한다. 당뇨병 예측에 대한 성능을 30회의 K-겹 교차검증 (K-Fold Corss Validation)을 이용하여 평가하였으며, 다층 퍼셉트론의 경우에는 훈련 데이터가 77.88%, 테스트 데이터가 62.78%로 나타났고 제안된 방법의 경우에는 훈련 데이터가 79.96%, 테스트 데이터 74.16%로 나타났다.

  • PDF

Application of Machine Learning Techniques for Resolving Korean Author Names (한글 저자명 중의성 해소를 위한 기계학습기법의 적용)

  • Kang, In-Su
    • Journal of the Korean Society for information Management
    • /
    • v.25 no.3
    • /
    • pp.27-39
    • /
    • 2008
  • In bibliographic data, the use of personal names to indicate authors makes it difficult to specify a particular author since there are numerous authors whose personal names are the same. Resolving same-name author instances into different individuals is called author resolution, which consists of two steps: calculating author similarities and then clustering same-name author instances into different person groups. Author similarities are computed from similarities of author-related bibliographic features such as coauthors, titles of papers, publication information, using supervised or unsupervised methods. Supervised approaches employ machine learning techniques to automatically learn the author similarity function from author-resolved training samples. So far however, a few machine learning methods have been investigated for author resolution. This paper provides a comparative evaluation of a variety of recent high-performing machine learning techniques on author disambiguation, and compares several methods of processing author disambiguation features such as coauthors and titles of papers.

Review of Author Name Disambiguation Techniques for Citation Analysis (인용분석에서의 모호한 저자명 식별을 위한 방법들에 관한 고찰)

  • Kim, Hyun-Jung
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.23 no.3
    • /
    • pp.5-17
    • /
    • 2012
  • In citation analysis, author names are often used as the unit of analysis and some authors are indexed under the same name in bibliographic databases where the citation counts are obtained from. There are many techniques for author name disambiguation, using supervised, unsupervised, or semisupervised learning algorithms. Unsupervised approach uses machine learning algorithms to extract necessary bibliographic information from large-scale databases and digital libraries, while supervised approaches use manually built training datasets for clustering author groups for combining them with learning algorithms for author name disambiguation. The study examines various techniques for author name disambiguation in the hope for finding an aid to improve the precision of citation counts in citation analysis, as well as for better results in information retrieval.

Enhancing Classification Performance by Separating Spectral Signature of Training Data Set (교사 자료의 분광 특징 분리에 의한 감독 분류 성능 향상)

  • 김광은
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.6
    • /
    • pp.369-376
    • /
    • 2002
  • This paper presents a method to enhance the performance of supervised classification by separating the spectral signature of the training data sets for each class. Using clustering technique, a training data set is divided into several subsets which show a pattern of the normal distribution with small value of spectral variances. Then a supervised classification is applied with the divided training data set as training data for the temporary subclasses of the original class. The proposed method is applied to a Landsat TM image of Busan area for the applicability test. The result shows that the proposed method produces better classified results than the conventional statistical classification methods. It is expected that the proposed method will reduce the effort and expense for selecting the training data set for each class in an area which has spectrally homogeneous signature.