• Title/Summary/Keyword: Supervised Data

Search Result 651, Processing Time 0.026 seconds

Development of 3D Crop Segmentation Model in Open-field Based on Supervised Machine Learning Algorithm (지도학습 알고리즘 기반 3D 노지 작물 구분 모델 개발)

  • Jeong, Young-Joon;Lee, Jong-Hyuk;Lee, Sang-Ik;Oh, Bu-Yeong;Ahmed, Fawzy;Seo, Byung-Hun;Kim, Dong-Su;Seo, Ye-Jin;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.1
    • /
    • pp.15-26
    • /
    • 2022
  • 3D open-field farm model developed from UAV (Unmanned Aerial Vehicle) data could make crop monitoring easier, also could be an important dataset for various fields like remote sensing or precision agriculture. It is essential to separate crops from the non-crop area because labeling in a manual way is extremely laborious and not appropriate for continuous monitoring. We, therefore, made a 3D open-field farm model based on UAV images and developed a crop segmentation model using a supervised machine learning algorithm. We compared performances from various models using different data features like color or geographic coordinates, and two supervised learning algorithms which are SVM (Support Vector Machine) and KNN (K-Nearest Neighbors). The best approach was trained with 2-dimensional data, ExGR (Excess of Green minus Excess of Red) and z coordinate value, using KNN algorithm, whose accuracy, precision, recall, F1 score was 97.85, 96.51, 88.54, 92.35% respectively. Also, we compared our model performance with similar previous work. Our approach showed slightly better accuracy, and it detected the actual crop better than the previous approach, while it also classified actual non-crop points (e.g. weeds) as crops.

Evaluation of Attribute Selection Methods and Prior Discretization in Supervised Learning

  • Cha, Woon Ock;Huh, Moon Yul
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.879-894
    • /
    • 2003
  • We evaluated the efficiencies of applying attribute selection methods and prior discretization to supervised learning, modelled by C4.5 and Naive Bayes. Three databases were obtained from UCI data archive, which consisted of continuous attributes except for one decision attribute. Four methods were used for attribute selection : MDI, ReliefF, Gain Ratio and Consistency-based method. MDI and ReliefF can be used for both continuous and discrete attributes, but the other two methods can be used only for discrete attributes. Discretization was performed using the Fayyad and Irani method. To investigate the effect of noise included in the database, noises were introduced into the data sets up to the extents of 10 or 20%, and then the data, including those either containing the noises or not, were processed through the steps of attribute selection, discretization and classification. The results of this study indicate that classification of the data based on selected attributes yields higher accuracy than in the case of classifying the full data set, and prior discretization does not lower the accuracy.

An Empirical Comparison Study on Attack Detection Mechanisms Using Data Mining (데이터 마이닝을 이용한 공격 탐지 메커니즘의 실험적 비교 연구)

  • Kim, Mi-Hui;Oh, Ha-Young;Chae, Ki-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2C
    • /
    • pp.208-218
    • /
    • 2006
  • In this paper, we introduce the creation methods of attack detection model using data mining technologies that can classify the latest attack types, and can detect the modification of existing attacks as well as the novel attacks. Also, we evaluate comparatively these attack detection models in the view of detection accuracy and detection time. As the important factors for creating detection models, there are data, attribute, and detection algorithm. Thus, we used NetFlow data gathered at the real network, and KDD Cup 1999 data for the experiment in large quantities. And for attribute selection, we used a heuristic method and a theoretical method using decision tree algorithm. We evaluate comparatively detection models using a single supervised/unsupervised data mining approach and a combined supervised data mining approach. As a result, although a combined supervised data mining approach required more modeling time, it had better detection rate. All models using data mining techniques could detect the attacks within 1 second, thus these approaches could prove the real-time detection. Also, our experimental results for anomaly detection showed that our approaches provided the detection possibility for novel attack, and especially SOM model provided the additional information about existing attack that is similar to novel attack.

A Supervised Learning Framework for Physics-based Controllers Using Stochastic Model Predictive Control (확률적 모델예측제어를 이용한 물리기반 제어기 지도 학습 프레임워크)

  • Han, Daseong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • In this paper, we present a simple and fast supervised learning framework based on model predictive control so as to learn motion controllers for a physic-based character to track given example motions. The proposed framework is composed of two components: training data generation and offline learning. Given an example motion, the former component stochastically controls the character motion with an optimal controller while repeatedly updating the controller for tracking the example motion through model predictive control over a time window from the current state of the character to a near future state. The repeated update of the optimal controller and the stochastic control make it possible to effectively explore various states that the character may have while mimicking the example motion and collect useful training data for supervised learning. Once all the training data is generated, the latter component normalizes the data to remove the disparity for magnitude and units inherent in the data and trains an artificial neural network with a simple architecture for a controller. The experimental results for walking and running motions demonstrate how effectively and fast the proposed framework produces physics-based motion controllers.

A Hybrid Recommendation System based on Fuzzy C-Means Clustering and Supervised Learning

  • Duan, Li;Wang, Weiping;Han, Baijing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2399-2413
    • /
    • 2021
  • A recommendation system is an information filter tool, which uses the ratings and reviews of users to generate a personalized recommendation service for users. However, the cold-start problem of users and items is still a major research hotspot on service recommendations. To address this challenge, this paper proposes a high-efficient hybrid recommendation system based on Fuzzy C-Means (FCM) clustering and supervised learning models. The proposed recommendation method includes two aspects: on the one hand, FCM clustering technique has been applied to the item-based collaborative filtering framework to solve the cold start problem; on the other hand, the content information is integrated into the collaborative filtering. The algorithm constructs the user and item membership degree feature vector, and adopts the data representation form of the scoring matrix to the supervised learning algorithm, as well as by combining the subjective membership degree feature vector and the objective membership degree feature vector in a linear combination, the prediction accuracy is significantly improved on the public datasets with different sparsity. The efficiency of the proposed system is illustrated by conducting several experiments on MovieLens dataset.

Efficient Hangul Word Processor (HWP) Malware Detection Using Semi-Supervised Learning with Augmented Data Utility Valuation (효율적인 HWP 악성코드 탐지를 위한 데이터 유용성 검증 및 확보 기반 준지도학습 기법)

  • JinHyuk Son;Gihyuk Ko;Ho-Mook Cho;Young-Kuk Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.1
    • /
    • pp.71-82
    • /
    • 2024
  • With the advancement of information and communication technology (ICT), the use of electronic document types such as PDF, MS Office, and HWP files has increased. Such trend has led the cyber attackers increasingly try to spread malicious documents through e-mails and messengers. To counter such attacks, AI-based methodologies have been actively employed in order to detect malicious document files. The main challenge in detecting malicious HWP(Hangul Word Processor) files is the lack of quality dataset due to its usage is limited in Korea, compared to PDF and MS-Office files that are highly being utilized worldwide. To address this limitation, data augmentation have been proposed to diversify training data by transforming existing dataset, but as the usefulness of the augmented data is not evaluated, augmented data could end up harming model's performance. In this paper, we propose an effective semi-supervised learning technique in detecting malicious HWP document files, which improves overall AI model performance via quantifying the utility of augmented data and filtering out useless training data.

A Study on Improving the predict accuracy rate of Hybrid Model Technique Using Error Pattern Modeling : Using Logistic Regression and Discriminant Analysis

  • Cho, Yong-Jun;Hur, Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.269-278
    • /
    • 2006
  • This paper presents the new hybrid data mining technique using error pattern, modeling of improving classification accuracy. The proposed method improves classification accuracy by combining two different supervised learning methods. The main algorithm generates error pattern modeling between the two supervised learning methods(ex: Neural Networks, Decision Tree, Logistic Regression and so on.) The Proposed modeling method has been applied to the simulation of 10,000 data sets generated by Normal and exponential random distribution. The simulation results show that the performance of proposed method is superior to the existing methods like Logistic regression and Discriminant analysis.

  • PDF

A Hybrid Data Mining Technique Using Error Pattern Modeling (오차 패턴 모델링을 이용한 Hybrid 데이터 마이닝 기법)

  • Hur, Joon;Kim, Jong-Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.4
    • /
    • pp.27-43
    • /
    • 2005
  • This paper presents a new hybrid data mining technique using error pattern modeling to improve classification accuracy when the data type of a target variable is binary. The proposed method increases prediction accuracy by combining two different supervised learning methods. That is, the algorithm extracts a subset of training cases that are predicted inconsistently by both methods, and models error patterns from the cases. Based on the error pattern model, the Predictions of two different methods are merged to generate final prediction. The proposed method has been tested using practical 10 data sets. The analysis results show that the performance of proposed method is superior to the existing methods such as artificial neural networks and decision tree induction.

Determination of Optimal Adhesion Conditions for FDM Type 3D Printer Using Machine Learning

  • Woo Young Lee;Jong-Hyeok Yu;Kug Weon Kim
    • Journal of Practical Engineering Education
    • /
    • v.15 no.2
    • /
    • pp.419-427
    • /
    • 2023
  • In this study, optimal adhesion conditions to alleviate defects caused by heat shrinkage with FDM type 3D printers with machine learning are researched. Machine learning is one of the "statistical methods of extracting the law from data" and can be classified as supervised learning, unsupervised learning and reinforcement learning. Among them, a function model for adhesion between the bed and the output is presented using supervised learning specialized for optimization, which can be expected to reduce output defects with FDM type 3D printers by deriving conditions for optimum adhesion between the bed and the output. Machine learning codes prepared using Python generate a function model that predicts the effect of operating variables on adhesion using data obtained through adhesion testing. The adhesion prediction data and verification data have been shown to be very consistent, and the potential of this method is explained by conclusions.

A study on Generating Molecules with Variational Auto-encoders based on Graph Neural Networks (그래프 신경망 기반 가변 자동 인코더로 분자 생성에 관한 연구)

  • Cahyadi, Edward Dwijayanto;Song, Mi-Hwa
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.380-382
    • /
    • 2022
  • Extracting informative representation of molecules using graph neural networks(GNNs) is crucial in AI-driven drug discovery. Recently, the graph research community has been trying to replicate the success of self supervised in natural language processing, with several successes claimed. However, we find the benefit brought by self-supervised learning on applying varitional auto-encoders can be potentially effective on molecular data.