• Title/Summary/Keyword: Superstructure of bridge

Search Result 239, Processing Time 0.033 seconds

Damage detection in truss bridges using vibration based multi-criteria approach

  • Shih, H.W.;Thambiratnam, D.P.;Chan, T.H.T.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.2
    • /
    • pp.187-206
    • /
    • 2011
  • This paper uses dynamic computer simulation techniques to develop and apply a multi-criteria procedure using non-destructive vibration-based parameters for damage assessment in truss bridges. In addition to changes in natural frequencies, this procedure incorporates two parameters, namely the modal flexibility and the modal strain energy. Using the numerically simulated modal data obtained through finite element analysis of the healthy and damaged bridge models, algorithms based on modal flexibility and modal strain energy changes before and after damage are obtained and used as the indices for the assessment of structural health state. The application of the two proposed parameters to truss-type structures is limited in the literature. The proposed multi-criteria based damage assessment procedure is therefore developed and applied to truss bridges. The application of the approach is demonstrated through numerical simulation studies of a single-span simply supported truss bridge with eight damage scenarios corresponding to different types of deck and truss damage. Results show that the proposed multi-criteria method is effective in damage assessment in this type of bridge superstructure.

Application of Energy-Dissipating Sacrificial Device(EDSD) for Enhancing Seismic Performance of Bridges (교량의 내진성능 향상을 위한 희생부재형 에너지소산장치(EDSD)의 적용에 관한 연구)

  • Kim, Sang-Hyo;Cho, Kwang-Yil;Kim, Hae-Young
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.445-452
    • /
    • 2006
  • A new Energy-Dissipating Sacrificial Device(EDSD) is proposed, which can effectively dissipate the energy stored in the structures during seismic actions. A mathematical 3-D bridge models and analysis techniques are developed to represent the non-linear behavior of the EDSD, various seismic responses of a sample bridge with the EDSD are analyzed in terms of energy, member forces and deformation using the developed analysis method. And the EDSD is tested and certified it's behavior and stability to apply on exiting bridges. The EDSD can be able to dissipate a large amount of energy and therefore it can prevent the pier's excessive forces under seismic excitations and EDSD and its connected members are also stable. Additionally, the method and guidelines of an optimum EDSD design are proposed in terms of installation method and decision of number of EDSD. The Proposed EDSD under seismic excitations can significantly decrease the excessive storing energy in the bridge structures and reduce the relative displacements of each superstructure to the ground. The EDSD is also found to function as a structural fuse under strong ground motions, sacrificing itself to absorb the excessive energy. Consequently, economical enhancement of the seismic performance of bridges can be achieved by employing the newly developed energy dissipation sacrificial device(EDSD).

  • PDF

A Fundamental Study on the Effects of Pavement Stiffness to the Structural Behavior of Orthotropic Steel Plate Deck (포장체의 강성이 강상판의 거동에 미치는 영향에 관한 기초연구)

  • Lee, Hwan-Woo;Jung, Du-Hwoe
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.191-198
    • /
    • 2003
  • The pavement stiffness is scarcely used in structural analysis to design the superstructure of bridge. It is reasonable not to consider it in the case of asphalt concrete pavement over concrete deck because the pavement stiffness compared with the concrete deck plate can be ignored. However, sometimes, the pavement materials have a similar amount of elastic modulus to concrete and are applied to the orthotropic steel deck plate which has relatively less stiffness compared with the concrete deck plate. In this paper, the steel plate deck of a real bridge project was analyzed by considering the pavement stiffness by linear elastic FEM. It was assumed that a perfect bond between the steel plate deck and the pavement exited. The results indicated that the structural behavior of the orthotropic steel deck plate can be estimated enough to affect the evaluation result of structural capacity in some cases. Therefore, the investigations by experimental tests and more advanced numerical model are indispensible in figuring the design formula for considering the effects of pavement stiffness in the structural analysis of an orthotropic bridge.

Energy-balance assessment of shape memory alloy-based seismic isolation devices

  • Ozbulut, O.E.;Hurlebaus, S.
    • Smart Structures and Systems
    • /
    • v.8 no.4
    • /
    • pp.399-412
    • /
    • 2011
  • This study compares the performance of two smart isolation systems that utilize superelastic shape memory alloys (SMAs) for seismic protection of bridges using energy balance concepts. The first isolation system is a SMA/rubber-based isolation system (SRB-IS) and consists of a laminated rubber bearing that decouples the superstructure from the bridge piers and a SMA device that provides additional energy dissipation and re-centering capacity. The second isolation system, named as superelastic-friction base isolator (S-FBI), combines the superelastic SMAs with a flat steel-Teflon bearing rather than a laminated rubber bearing. Seismic energy equations of a bridge structure with SMA-based isolation systems are established by absolute and relative energy balance formulations. Nonlinear time history analyses are performed in order to assess the effectiveness of the isolation systems and to compare their performance. The program RSPMatch 2005 is employed to generate spectrum compatible ground motions that are used in time history analyses of the isolated bridge. Results indicate that SRB-IS produces higher seismic input energy, recoverable energy and base shears as compared to the S-FBI system. Also, it is shown that combining superelastic SMAs with a sliding bearing rather than rubber bearing significantly reduce the amount of the required SMA material.

Numerical Study of Lightweight FRP Bridge Deck System induced by Thermal Stress by Fire (화재 발생시 열응력에 의한 복합재료 과량 시스템의 거동에 관한 연구)

  • Jung Woo-Young;Lee Hyung-Kil;Park Hui-Kwang;Shim In-Seob;Song Young-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.928-931
    • /
    • 2006
  • Due to their light weight, high stiffness-to-weight and strength-to-weight ratios, and potentially high resistance to environmental degradation, resulting in lower life-cycle costs, polymer composites, are increasingly being considered for use in civil infrastructure applications. Recently, an FRP deck has been installed on a state highway, located in New York State. In this study, a thermal stress analysis was conducted using finite element method to study failure mechanisms of the superstructure. This analysis evaluated small and large temperature gradient effects on the FRP deck considering lightweight of FRP deck and ply orientations at the interface between steel girders and FRP deck Finite element model was verified using the load tests of the bridge deck. Finally, the analytical results shows the possible failure mechanism of FRP deck under various temperature changes and its corresponding index is suddenly varied depending on the rapid change of temperature on the deck plate.

  • PDF

An Analysis of the Characteristics of Standard Work and Design Information on Estimating Environmental Loads of PSC Beam Bridge in the Design Phase (PSC Beam 교량의 설계단계 환경부하량 산정을 위한 공종 및 설계정보 특성 분석)

  • Yun, Won Gun;Ha, Ji Kwang;Kim, Kyong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.705-716
    • /
    • 2017
  • As many environmental pollution problems have arisen, various studies related to the environmental evaluation have been carried out in the construction industry. However, there is no methodology for estimating the environmental load quickly for design alternatives of civil facilities in the design phase. This study aim to establish criteria of works information and designed parts which can efficiently estimate environmental loads of PSC beam bridge based on standard quantity at the early design phase. For this purpose, a detailed environmental loads database was constructed by performing Life Cycle Assessment (LCA) based on detailed design data of 25 bridges. In addition, major work with high impact on environmental load were selected, and the analysis of characteristics of environmental load according to the required materials and 8 impact categories were conducted. As a result, the superstructure accounted for 42.91%. In the superstructure, remicon of the material base and PSC beam work occupied 53.13% and 31.25%. In the substructure, remicon, rebar, and cement, which are material base, accounted for more than 93%. It is expected that this major work and material information for each part of bridge can be utilized in the construction of the model, which can estimate the approximate environmental load, reflecting the characteristics of the structure in the design phase.

Analysis of Dynamic Behavior of Group Piles in Asymmetric Ground (비대칭지반에 설치된 무리말뚝의 동적거동 분석)

  • Kyungil Cho;Hongsig Kang;Kusic Jeong;Kwangkuk Ahn
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.10
    • /
    • pp.41-49
    • /
    • 2023
  • Structures such as bridge columns installed on the asymmetric ground such as mountain areas and sloping ground are subject to various loads such as wind, temperature, earthquake, and etc. The pile foundation is generally applied to bridge columns on the asymmetric ground in order to stably support structures. The behavior of the pile foundation supporting bridge columns changes due to various load conditions. In particular, ground-pile-structure interactions should be studied to analyze the behavior of the pile foundation that supports bridge columns effected by dynamic loads such as earthquakes. The pile foundation installed on the asymmetric ground effected by the earthquake has the complicated dynamic interaction between the foundation and the ground due to the ground slope, the difference in soil resistance according to the shaking direction, and the ground movements. In this study, the 1g shaking table tests were conducted to confirm the effect of the slope of the sloping ground on the dynamic behavior of group piles supporting the superstructure installed at the berm of the sloping sandy soil which is the asymmetric ground. The result shows that the acceleration of the pile cap and the superstructure decrease as the slope of the sloping ground increase, and the slope of the dynamic p-y curve of the pile decrease.

Analysis and Prediction for Abutment Behavior of Prestressed Concrete Girder Integral Abutment Bridges (프리스트레스트 콘크리트 거더 일체식 교량의 교대 거동 해석과 예측)

  • Kim, Woo-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.667-674
    • /
    • 2011
  • This paper discusses the analysis method of prestressed concrete girder integral abutment bridges for a 75-year bridge life and the development of prediction models for abutment displacements under thermal loading due to annual temperature fluctuation and time-dependent loading. The developed nonlinear numerical modeling methodologies considered soil-structure interaction between supporting piles and surrounding soils and between abutment and backfills. Material nonlinearity was also considered to simulate differential rotation in construction joints between abutment and backwall. Based on the numerical modeling methodologies, a parametric study of 243 analysis cases, considering five parameters: (1) thermal expansion coefficient, (2) bridge length, (3) backfill height, (4) backfill stiffness, and (5) pile soil stiffness, was performed to established prediction models for abutment displacements over a bridge life. The parametric study results revealed that thermal expansion coefficient, bridge length, and pile-soil stiffness significantly influenced the abutment displacement. Bridge length parameter significantly influenced the abutment top displacement at the centroid of the superstructure, which is similar to the free expansion analysis results. Developed prediction model can be used for a preliminary design of integral abutment bridges.

Structural Analysis and Safety Assessment for Constricted Bridges (협착교량의 구조해석 및 안전성 평가)

  • Jeong, Jae-Hun;Kim, Moon-Ok;Choi, Hyun-Ho;Kim, Jang-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.33-38
    • /
    • 2022
  • As the intense heat continues, many cases of highway pavement blow up and bridge expansion joints damages have been inspected. Especially, Expansion joint closure of bridges is an important problem that can threat the safety of the bridge structure or reduce long-term durability. This paper proposed a structural analysis method for bridges having expansion joint closure and structural analysis was performed to verify the effects according to bridge types. Analysis bridges were divided into four types: concrete and steel bridges, shallow and piled foundations. To induce the situation of abutments and bridge decks are jammed, the following loads were additionally considered; lateral flow pressure, pavement expansion by alkali-aggregate reaction, creep settlement of backfill. The structural analysis method was verified by comparing the structural analysis results with the actually measured joint gap data. In addition, behavioral analysis due to joint closure was conducted to confirm the change in safety ratio by type of superstructure as the axial force increased.

Evaluation of Data-based Expansion Joint-gap for Digital Maintenance (디지털 유지관리를 위한 데이터 기반 교량 신축이음 유간 평가 )

  • Jongho Park;Yooseong Shin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.1-8
    • /
    • 2024
  • The expansion joint is installed to offset the expansion of the superstructure and must ensure sufficient gap during its service life. In detailed guideline of safety inspection and precise safety diagnosis for bridge, damage due to lack or excessive gap is specified, but there are insufficient standards for determining the abnormal behavior of superstructures. In this study, a data-based maintenance was proposed by continuously monitoring the expansion-gap data of the same expansion joint. A total of 2,756 data were collected from 689 expansion joint, taking into account the effects of season. We have developed a method to evaluate changes in the expansion joint-gap that can analyze the thermal movement through four or more data at the same location, and classified the factors that affect the superstructure behavior and analyze the influence of each factor through deep learning and explainable artificial intelligence(AI). Abnormal behavior of the superstructure was classified into narrowing and functional failure through the expansion joint-gap evaluation graph. The influence factor analysis using deep learning and explainable AI is considered to be reliable because the results can be explained by the existing expansion gap calculation formula and bridge design.