• 제목/요약/키워드: Supersaturated solid solution

검색결과 26건 처리시간 0.029초

급냉응고(急冷凝固)한 Al-Cr계합금(系合金)의 응고조직(凝固組織)에 미치는 응고속도(凝固速度)와 두께의 영향 (The Effect of Thickness and Solidification Rate on the Rapidly Solidified Structure of Al-Cr Alloys)

  • 조순형;남태운;윤의박
    • 한국주조공학회지
    • /
    • 제5권2호
    • /
    • pp.118-124
    • /
    • 1985
  • The thickness ranges and conditions to form the supersaturated solid solution in Al-Cr alloys were investigated with various rapid solidification conditions. Al-Cr alloys, rapidly solidified by using the small droplet chill quenching method, were examined by means of micro-vickers hardness, lattice parameter, thermal analysis and microscopic observation. The results obtained were as follows; 1. With the increase of solidification rate, the solidified structures were changed to intermetallic compound + solid solution, incompletely supersaturated solid solution, completely supersaturated solid solution, in turn. 2. The minimum solidification rate required to form completely supersaturated solid solution was $2.5{\times}10^{-2}cm/sec$, $3.6{\times}10^{-2}cm/sec$ and $6.0{\times}10^{-2}cm/sec$ for Al-1.0wt%Cr, Al-1,2wt%Cr and Al-1.5wt%Cr, respectively. 3. The maximum distance from the chill surface required to form completely supersaturated solid solution was 5mm, 1.3mm and 0.3mm for Al-1.0wt%Cr, Al-1.2wt%Cr and Al-1.5wt% Cr, respectively.

  • PDF

기계적 합금화에 의한 비고용 Cu-Nb계 비평형 합금의 제조 (Fabrication of nonequilibrium alloy powders in immiscible Cu-Nb system by mechanical alloying)

  • 이충효
    • 한국결정성장학회지
    • /
    • 제16권5호
    • /
    • pp.210-215
    • /
    • 2006
  • 본 연구에서는 순 Cu 및 Nb 혼합분말에 대하여 Ar 분위기 중 고에너지 볼밀처리를 실시하여 기계적 합금화(MA) 효과를 조사하였다. $Cu_xNb_{100-x}$(x=5-50) 조성의 혼합분말을 각각 120시간까지 MA 처리 한 결과, Cu의 bcc-Nb 과포화 고용체가 30 at% Cu까지 넓어짐을 X선 회절분석, DSC 열분석 및 저온비열 측정을 통한 초전도 천이온도 변화로부터 알수 있었다. 120시간 MA 처리한 $Cu_{30}Nb_{70}$ 조성합금의 열분석 결과 broad한 발열반응만이 관찰되었으며, 볼밀처리에 의하여 계에 축적되는 에너지는 볼밀시간에 따라 증가하여 7.5kJ/mol 에 포화됨을 알 수 있었다. Miedema et al.의 계산에 의하면 $Cu_{30}Nb_{70}$ 혼합분말과 과포화 고용체의 자유에너지 차가 7kJ/mol이며, 본 연구에서 MA에 의하여 계에 축적된 에너지 값과 거의 같은 사실로부터 이 계에서 열역학적으로 과포화 고용체가 충분히 얻어질 수 있음을 나타내는 것으로 판단된다.

Single Roller법에 의한 Al-Cr 계 합금의 급냉응고 조직과 상분해 (Rapidly Solidified Microstructure and Phase Decomposition of Al-Cr alloys by the Single Roller Method)

  • 조순형;윤의박
    • 한국주조공학회지
    • /
    • 제7권2호
    • /
    • pp.108-113
    • /
    • 1987
  • Al-Cr alloy with composition in the range from 1.5 wt% to 10 wt% Cr were rapidly solidified from the melt by the single roller method. The supersaturated solid solution was obtained up to 6 wt% Cr in Al-Cr alloy for $20{\mu}m$ thickness. Lattice parameter decreased with increasing Cr content at the rate of 0.00456A per wt% Cr up to 6 wt% Cr. Microhardness increased with increasing Cr content at the rate of $10\;Kg/mm^2$ per wt% Cr up to 6 wt% Cr. Microhardness measurements on the Al-6 wt% Cr supersaturated solid solution annealed isothermally showed no sign of age hardening. Decomposition temperature, determined by lattice parameter changes and microhardness changes, was $470^{\circ}C$ for Al-6 wt% Cr supersaturated solid solution. Transmission electron microscopy showed that decomposition within one hour below $400^{\circ}C$ occurred at grain boundaries only, and also the additional decomposition within grains being evident at $450^{\circ}C$ The coarse precipitate structure showed at $500^{\circ}C$ and $550^{\circ}C$, respectively. The coarse precipitate structure is considered $Al_7Cr$.

  • PDF

Measurement of Crystal Formation in Supersaturated Solution

  • Kim, Byung-Chul;Kim, Young-Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1196-1200
    • /
    • 2003
  • The degree of supersaturation is an important measure for the operation of crystallization processes, because it is directly related to the control of crystal size distribution and shape. A conventional technique utilizing solution composition and temperature has a variety of problems caused from the measurement error and the handling of analyzing samples. A monitoring system of the supersaturation using a quartz crystal sensor is proposed here, and its performance is examined applying different manipulations of coolant temperature. The experimental outcome and photographic examination indicate that the measurements of resonant frequency and resistance of the sensor can be used for the prediction of the formation and growth of solid crystal from the crystallization process. The monitoring system eliminates the intrinsic error source of the conventional system to give the improved measurement and on-line application availability.

  • PDF

Cu-1.6Co-0.38Si 합금의 열처리에 따른 경도 및 전기전도도의 변화 (Hardness and Electrical Conductivity Changes according to Heat Treatment of Cu-1.6Co-0.38Si Alloy)

  • 곽원신;이시담
    • 열처리공학회지
    • /
    • 제33권5호
    • /
    • pp.226-231
    • /
    • 2020
  • The Cu-Co-Si alloy shows high strength by forming precipitates by aging precipitation heat treatment of supersaturated solid solution treated with solution treatment such as Cu-Ni-Si alloy, and the Co2Si precipitated phase is dispersed in the copper matrix. The effect of aging treatment on the microstructure, mechanical and electrical properties of Cu-Co-Si alloys for electronic devices was investigated. As a results of SEM/EDS analysis, it was found that Co2Si precipitates of 30~300 nm size were distributed in grains. By performing the double aging treatment, it was possible to improve the strength and electrical conductivity by dispersing the fine precipitate evenly.

열처리에 따른 제2상 석출이 Al-4.5%Cu 합금의 열 물성에 미치는 영향 (Influences of Precipitation of Secondary Phase by Heat Treatment on Thermal Properties of Al-4.5%Cu Alloy)

  • 최세원
    • 한국재료학회지
    • /
    • 제30권8호
    • /
    • pp.435-440
    • /
    • 2020
  • The relationship between the precipitation of secondary phase and the thermal properties of Al-4.5%Cu alloy (in wt.%) after various heat treatments has been studied. Solid solution treatment of alloy was performed at 808 K for 6 hours, followed by warm water quenching; then, the samples were aged in air at 473 K for different times. The thermal diffusivity of the Al-4.5%Cu alloy changed with the heat treatment conditions of the alloy at temperatures below 523 K. The as-quenched specimen had the lowest thermal diffusivity, and as the artificial aging time increased, the thermal diffusivity of the specimen increased in the temperature range between 298 and 523 K. For the specimen aged for five hours, the thermal conductivity was 12% higher than that of the as-quenched specimens at 298 K. It is confirmed that the thermal diffusivity and thermal conductivity of the Al-4.5%Cu alloy significantly depend on their thermal history at temperatures below 523 K. The precipitation and dissolution of the Al2Cu phase were confirmed via DSC for the alloys, and the formation of coefficient of thermal expansion peaks in TMA was caused by precipitation. The precipitation of supersaturated solid solution of Al-4.5%Cu alloys had an additional linear expansion of ≈ 0.05 % at 643 K during thermal expansion measurement.

pH 4.3과 pH 7.0의 과포화용액에서 불소의 농도가 합성 수산화인회석의 결정 성장에 미치는 영향 (Effect of fluoride concentration in pH 4.3 and pH 7.0 supersaturated solutions on the crystal growth of hydroxyapatite)

  • 신한얼;박성호;박정원;이찬영
    • Restorative Dentistry and Endodontics
    • /
    • 제37권1호
    • /
    • pp.16-23
    • /
    • 2012
  • Objectives: Present study was undertaken to investigate the crystal growth onto synthetic hydroxyapatite (HA) seeds in pH 4.3 and pH 7.0 supersaturated solutions with different fluoride concentrations. Materials and Methods: 8 groups of pH 4.3 and 7.0 calcium phosphate supersaturated solutions were prepared with different fluoride concentrations (0, 1, 2 and 4 ppm). Calcium phosphate precipitates yield crystal growth onto the HA seed surface while solutions flow. For evaluation of crystallizing process, the changes of $Ca^{2+}$, $PO{_4}^{3-}$, $F^-$ concentrations of the inlet and outlet solutions were determined. The recovered solid samples were weighed to assess the amount of minerals precipitated, and finally determined their composition to deduce characteristics of crystals. Results: During the seeded crystal growth, there were significantly more consumption of $Ca^{2+}$, $PO{_4}^{3-}$, $F^-$ in pH 4.3 solutions than pH 7.0 (p < 0.05). As fluoride concentration increased in pH 4.3 solution, $Ca^{2+}$, $PO{_4}^{3-}$, $F^-$ consumption in experimental solutions, weight increment of HA seed, and fluoride ratio in crystallized samples were increased. There were significant differences among the groups (p < 0.05). But in pH 7.0 solution, these phenomena were not significant. In pH 7.0 solutions, analyses of crystallized samples showed higher Ca/P ratio in higher fluoride concentration. There were significant differences among the groups (p < 0.05). But in pH 4.3 solution, there were not significant differences in Ca/P ratio. Conclusions: Crystal growth in pH 4.3 solutions was superior to that in pH 7.0 solutions. In pH 4.3 solutions, crystal growth increased with showed in higher fluoride concentration up to 4 ppm.

기계적합금화 방법에 의한 Nanostructured W-Cu 합금의 제조 및 물성연구(I) (On Properties and Synthesis of Nanostructured W-Cu Alloys by Mechanical Alloying(I))

  • 김진천
    • 한국분말재료학회지
    • /
    • 제4권2호
    • /
    • pp.122-132
    • /
    • 1997
  • Nanostructured(NS) W-Cu composite powders of about 20~30 nm grain size were synthesized by mechanical alloying. The properties of NS W-Cu powder and its sintering behavior were investigated. It was shown from X-ray diffraction and TEM analysis that the supersaturated solid solution of Cu in W was not formed by the mechanical alloying of mixed elemental powders, but the mixture of W and Cu particles with nanosize grains, i.e., the nanocomposite powder was attained. Nanocomposite W-20wt%Cu and W-30wt%Cu powders milled for 100 h were sintered to the relative density more than 96% and 98%, respectively, by sintering at 110$0^{\circ}C$ for 1 h in $H_2$. Such a high sinterability was attributed to the high homogeneous mixing and ultra-fine structure of W and Cu phases as well as activated sintering effect by impurity metal introduced during milling.

  • PDF

기계적 합금화 방법에 의한 $Nb_3Sn$합금 제조 (The synthesis of $Nb_3Sn$ alloy powders by mechanical alloying)

  • 이성만
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 추계학술대회 논문집 학회본부
    • /
    • pp.464-467
    • /
    • 1996
  • The microstructural evolution during mechanical alloying of Nb and Sn powders, of average composition Nb3Sn, has been investigated by X-ray diffraction(XRD) and scanning electron microscopy(SEM). Observations by SEM showed a progressive change of milling time. From the XRD studies, the structural development with milling time depends on the ball size for a given powder/ball ratio. Using a larger ball of 9.5mm diameter, the elemental powders initially alloy mechanically to form an A15 structure phase, and then amorphised with continued milling. However, in case of milling with a smaller ball of 3.968mm diameter, an amorphous phase is first formed. These results can be understood by considering the dependence of the milling energy on the ball size. The homogeneous stoichiometric $Nb_3Sn$ phase could be easily obtained by heat treatment of a supersaturated solid solution produced by MA. Heat treatment of an amorphous phase formed by MA resulted in the mixture of the $Nb_3Sn$ and $Nb_6Sn_5$ phases.

  • PDF