• Title/Summary/Keyword: Superposition modeling

Search Result 50, Processing Time 0.029 seconds

Hydroelastic Analysis of Pontoon Type VLFS Considering the Location and Shape of OWC Chamber (공기챔버 위치에 따른 폰툰형 초대형 구조물 유탄성응답 해석)

  • Hong, Sa-Young;Kyoung, Jo-Hyun;Kim, Byoung-Wan
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.22-29
    • /
    • 2008
  • A numerical investigation is made on the effects of the location and shape of the front wall of an OWC(Oscillating Water Column) chamber on the hydroelastic response of a VLFS. Most of the studies on the effects of an OWC chamber on the response of a VLFS have assumed the location of the OWC chamber to be at the front of the VLFS. In the present study, an OWC-chamber is introduced at an arbitrary position in relation to a VLFS to determine the influence of the location and shape of the OWC chamber on the hydroelastic response of the VLFS. A finite element method is adopted as a numerical scheme for the fluid domain. or the finite element method, combined with a mode superposition method, is applied in order to consider the change of mass and stiffness The OWC chamber in a piecewise constant manner. or the facilitated anefficient analysis of The hydroelastic response of the VLFS, as well as the easy modeling of different shape and material properties for the structure. Reduction of hydroelastic response of the VLFS is investigated for various locations and front wall shapes of the owe chamber.

Characterization of Groundwater Flow to Horizontal or Slanted Well Using Numerical Modeling (수치 모사를 활용한 수평 혹은 경사형 특수 정호 지하수 흐름 특성 평가)

  • Kim, Hyoung-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.2
    • /
    • pp.54-61
    • /
    • 2008
  • The drawdown distribution due to pumping by horizontal or slanted wells is analyzed by numerical modelling. In the numerical modelling uses 1-D discrete element feature included in commercial groundwater modeling program FEFLOW (version 5.1) and the results are compared with the semi analytic solution which uses superposition of successive point sources proposed by Zhan and Zlotnik (2002). Results of the numerical modeling agree well with the semi analytic solution except for very near field region of sink sources. The drawdown distribution due to pumping in riverbank filtration(RBF) plan site can be evaluated quantitatively by the numerical modeling in this study.

cDNA Cloning, Expression and Homology Modeling of a Luciferase from the Firefly Lampyroidea maculata

  • Emamzadeh, Abdo Rahman;Hosseinkhani, Saman;Sadeghizadeh, Majid;Nikkhah, Maryam;Chaichi, Mohammad Javad;Mortazavi, Mojtaba
    • BMB Reports
    • /
    • v.39 no.5
    • /
    • pp.578-585
    • /
    • 2006
  • The cDNA of a firefly luciferase from lantern mRNA of Lampyroidea maculata has been cloned, sequenced and functionally expressed. The cDNA has an open reading frame of 1647 bp and codes for a 548-residue-long polypeptide. Noteworthy, sequence comparison as well as homology modeling showed the highest degree of similarity with H. unmunsana and L. mingrelica luciferases, suggesting a close phylogenetic relationship despite the geographical distance separation. The deduced amino acid sequence of the luciferase gene of firefly L. maculata showed 93% identity to H. unmunsana. Superposition of the three-dimensional model of L. maculata luciferase (generated by homology modeling) and three dimensional structure of Photinus pyralis luciferase revealed that the spatial arrangements of Luciferin and ATP-binding residues are very similar. Putative signature of AMP-binding domain among the various firefly species and Lampyroidea maculata was compared and a striking similarity was found. Different motifs and sites have been identified in Lampyroidea maculata by sequence analysis. Expression and purification of luciferase from Lampyroidea maculata was carried out using Ni-NTA Sepharose. Bioluminescence emission spectrum was similar to Photinus pyralis luciferase.

METHOD FOR THE ANALYSIS OF TEMPORAL CHANGE OF PHYSICAL STRUCTURE IN THE INSTRUMENTATION AND CONTROL LIFE-CYCLE

  • Goring, Markus;Fay, Alexander
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.653-664
    • /
    • 2013
  • The design of computer-based instrumentation and control (I&C) systems is determined by the allocation of I&C functions to I&C systems and components. Due to the characteristics of computer-based technology, component failures can negatively affect several I&C functions, so that the reliability proof of the I&C systems requires the accomplishment of I&C system design analyses throughout the I&C life-cycle. On one hand, this paper proposes the restructuring of the sequential IEC 61513 I&C life-cycle according to the V-model, so as to adequately integrate the concept of verification and validation. On the other hand, based on a metamodel for the modeling of I&C systems, this paper introduces a method for the modeling and analysis of the effects with respect to the superposition of failure combinations and event sequences on the I&C system design, i.e. the temporal change of physical structure is analyzed. In the first step, the method is concerned with the modeling of the I&C systems. In the second step, the method considers the analysis of temporal change of physical structure, which integrates the concepts of the diversity and defense-in-depth analysis, fault tree analysis, event tree analysis, and failure mode and effects analysis.

Modeling of a Scan Type Magnetic Camera Image Using the Improved Dipole Model

  • Hwang Ji-Seong;Lee Jin-Yi
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1691-1701
    • /
    • 2006
  • The scan type magnetic camera is proposed to improve the limited spatial resolution due to the size of the packaged magnetic sensor. An image of the scan type magnetic camera, ${\partial}B/{\partial}x$ image, is useful for extracting the crack information of a specimen under a large inclined mag netic field distribution due to the poles of magnetizer. The ${\partial}B/{\partial}x$ images of the cracks of different shapes and sizes are calculated by using the improved dipole model proposed in this paper. The improved dipole model uses small divided dipole models, the rotation and relocation of each dipole model and the principle of superposition. Also for a low carbon steel specimen, the experimental results of nondestructive testing obtained by using multiple cracks are compared with the modeling results to verify the effectiveness of ${\partial}B/{\partial}x$ modeling. The improved dipole model can be used to simulate the LMF and ${\partial}B/{\partial}x$ image of a specimen with complex cracks, and to evaluate the cracks quantitatively using magnetic flux leakage testing.

A new approach for modeling pulse height spectra of gamma-ray detectors from passing radioactive cloud in a case of NPP accident

  • R.I. Bakin;A.A. Kiselev;E.A. Ilichev;A.M. Shvedov
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4715-4721
    • /
    • 2022
  • A comprehensive approach for modeling the pulse height spectra of gamma-ray detectors from passing radioactive cloud in a case of accident at NPP has been developed. It involves modeling the transport of radionuclides in the atmosphere using Lagrangian stochastic model, WRF meteorological processor with an ARW core and GFS data to obtain spatial distribution of radionuclides in the air at a given moment of time. Applying representation of the cloud as superposition of elementary sources of gamma radiation the pulse height spectra are calculated based on data on flux density from point isotropic sources and detector response function. The proposed approach allows us to obtain time-dependent spectra for any complex radionuclide composition of the release. The results of modeling the pulse height spectra of the scintillator detector NaI(Tl) Ø63×63 mm for a hypothetical severe accident at a NPP are presented.

Analysis for Catenary Voltage of The ATs-Fed AC Electric Railroad System (교류전기철도 급전시스템의 전차선 전압해석)

  • 이승혁;정현수;김진오
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.490-496
    • /
    • 2002
  • This paper presents exact Autotransformers(ATs)-fed AC electric Railroad system modeling using constant current mode far locomotives. An AC electric railroad system is rapidly changing single-phase load, and at a feeding substation, 3-phase electric power is transferred to paired directional single-phase electric power. As the train moves along a section of line between two adjacent ATs. The proposed AC electric railroad system modeling method considers the line self-impedances and mutual-impedances. The constant current mode model objectives are to calculate the catenary and rail voltages with the loop equation. When there are more than one train in the AC electric railroad system, the principle of superposition applies and the only difference between the system analyses for one train. Finally, this paper shows the general equation of an AC electric railroad system, and that equation has no relation with trains number, trains position, and feeding distance.

  • PDF

Analysis for Catenary Voltage of The ATs-Fed AC Electric Railroad System (단권변압기 교류전기철도 급전시스템의 전차선 전압해석)

  • 정현수;이승혁;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.9
    • /
    • pp.493-499
    • /
    • 2003
  • This paper presents exact Autotransformers(ATs)-fed AC electric Railroad system modeling using constant current mode for locomotives. An AC electric railroad system is rapidly changing single-phase load, and at a feeding substation, 3-phase electric power is transferred to paired directional single-phase electric power. As the train moves along a section of line between two adjacent ATs. The proposed AC electric railroad system modeling method considers the line self-impedances and mutual-impedances. The constant current mode model objectives are to calculate the catenary and rail voltages with the loop equation. When there are more than one train in the AC electric railroad system, the principle of superposition applies and the only difference between the system analyses for one train. Filially, this paper shows the general equation of an AC electric railroad system, and that equation has no relation with trains number, trains position, and feeding distance.

Shaking Table Test of a Structure with Added Viscoelastic Dampers (점탄성 감쇠기가 설치된 구조물의 진동대 실험)

  • Kim., Jin-Koo;Kwon., Young-Jip
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.4
    • /
    • pp.197-203
    • /
    • 2001
  • This study presents the results of shaking table test of scaled model structures with added viscoelastic dampers, which are considered to be one of the most efficient means of upgrading existing structures against seismic loads. The experimental results were compared with those from analysis based on the linear modeling of viscoelastic dampers. The parameters obtained from free vibration test were utilized in the analysis. According to the results the added viscoelastic dampers turned out to be effective in reducing the responses of the model structures. It was also found that the analysis with linear modeling of viscoelastic dampers could simulate the test results accurately.

  • PDF

Non linear seismic response of a low reinforced concrete structure : modeling by multilayered finite shell elements

  • Semblat, J.F.;Aouameur, A.;Ulm, F.J.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.2
    • /
    • pp.211-229
    • /
    • 2004
  • The main purpose of this paper is the numerical analysis of the non-linear seismic response of a RC building mock-up. The mock-up is subjected to different synthetic horizontal seismic excitations. The numerical approach is based on a 3D-model involving multilayered shell elements. These elements are composed of several single-layer membranes with various eccentricities. Bending effects are included through these eccentricities. Basic equations are first written for a single membrane element with its own eccentricity and then generalised to the multilayered shell element by superposition. The multilayered shell is considered as a classical shell element : all information about non-linear constitutive relations are investigated at the local scale of each layer, whereas balance and kinematics are checked afterwards at global scale. The non-linear dynamic response of the building is computed with Newmark algorithm. The numerical dynamic results (blind simulations) are considered in the linear and non linear cases and compared with experimental results from shaking table tests. Multilayered shell elements are found to be a promising tool for predictive computations of RC structures behaviour under 3D seismic loadings. This study was part of the CAMUS International Benchmark.