• Title/Summary/Keyword: Superplasticizer

Search Result 319, Processing Time 0.028 seconds

A Study on the Fluidity of Antiwashout Underwater Concrete Containing Fly Ash (Fly Ash를 사용한 수중불분리 콘크리트의 유동성에 관한 연구)

  • 권중현;배기성
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.153-161
    • /
    • 1998
  • This paper is to investigate the Fluidity of Antiwashout Underwater Concrete containing Fly Ash. The results of study are concluded as follows: the increase in Slump Flow value did not happen in the plain concrete which was replaced cement by Fly Ash; however, the maximum value could reach in the replacement of 30% of Fly Ash by weight of cement in the Fly Ash replaced concrete. On the condition of Fly Ash-Antiwashout Underwater Concrete in expecting 50 cm of the Slump Flow, it was necessary that the usage amount of Superplasticizer be around 1% of unit Binder, and 1.5% in 60 cm of the Slump Flow, respoectively.

  • PDF

A Study on the Improvement of Construction Performance of Steel Fiber Reinforced Cementitious Composites (강섬유 보강 시멘트 복합체의 시공성 향상에 관한 연구)

  • 고경택;박정준;김방욱;이종석;김성욱;이장화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.749-754
    • /
    • 2002
  • In this study, it is investigate to influence on tile dispersion of fiber and the flowability of matrix of type and amount of superplasticizer, velocity agent, mineral admixture and steel fiber to improve for construction performance of steel fiber reinforced cementitious composites. As for the test results, it was found that the dispersion of fiber and the flowability of matrix in steel fiber reinforced cementitious composites can improve by using of properly amount and combination of superplasticizer, velocity agent, mineral admixture. Furthermore, It show that the aspect ratio of steel fiber affect the construction performance of fiber reinforced cementitious composites, and the improvement for construction performance is the more effective the smaller aspect ration of steel fiber.

  • PDF

Statistical models for mechanical properties of UHPC using response surface methodology

  • Mosaberpanah, Mohammad A.;Eren, Ozgur
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.667-675
    • /
    • 2017
  • One of the main disadvantages of Ultra High Performance Concrete exists in the large suggested value of UHPC ingredients. The purpose of this study was to find the models mechanical properties which included a 7, 14 and 28-day compressive strength test, a 28-day splitting tensile and modulus of rupture test for Ultra High Performance Concrete, as well as, a study on the interaction and correlation of five variables that includes silica fume amount (SF), cement 42.5 amount, steel fiber amount, superplasticizer amount (SP), and w/c mechanical properties of UHPC. The response surface methodology was analyzed between the variables and responses. The relationships and mathematical models in terms of coded variables were established by ANOVA. The validity of models were checked by experimental values. The offered models are valid for mixes with the fraction proportion of fine aggregate as; 0.70-1.30 cement amount, 0.15-0.30 silica fume, 0.04-0.08 superplasticizer, 0.10-0.20 steel fiber, and 0.18-0.32 water binder ratio.

Fundamental Properties of Self-Compacting Concrete Using Viscosity Modifying Admixture (증점제를 사용한 고유동콘크리트의 기초 물성)

  • 김진철;안태송;문한영
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.69-78
    • /
    • 1999
  • Hydroxyethyl cellulose -based-viscosity modifying admixture and melamine-basd-superplasticizer were selected to be admixtures for self-compacting concrete based on the test results of fluidity and air content of mortar using 3 different viscosity modifying admixtures. The experimental results show that the initial and final set of self-compacting concrete and fly ash concrete with viscosity modifying admixture only have been delayed approximately 5 hours and 8~9 hours, respectively. It is found that the optimum dosage of viscosity modifying admixtures, coarse aggregate and cement content are 0.2% of water content, under 742 kg/$\textrm{m}^3$ and over 364 kg/$\textrm{m}^3$, respectively. Test results also show that the optimum fly ash in replacement of cement is 10% of cement weight for the enhancement of fluidity and long-term strength.

An Experimental Study on the Workability of High Strength Concrete according to Temperature and Elapsed time (온도조건 및 시간경과에 따른 고강도 콘크리트의 시공성에 관한 실험 연구)

  • 박준호;윤명덕;임병호;김태곤;박정민;김화중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.25-30
    • /
    • 2001
  • The purpose of this study is to present a basic data about the workability of high strength concrete to apply to a field of construction work. The main parameters are as follows; environmental temperature, elapsed time and the use of mineral admixture or not under the same mixing proportions. From the result, Adding amounts of superplasticizer to get a target slump were different in the respective temperature condition. Slump loss according to elapsed time was influenced by environmental temperature. the amount of superplasticizer and the slump loss were decreased by using mineral admixture(garnet powder) and by making concrete under lower temperature.

  • PDF

An Experimental Study on the Frost Resistance of High-Flowing Concrete Using Granulated Blast-Furnace Slag (고로슬래그 미분말을 사용한 고유동콘크리트의 내동해성에 관한 실험적 연구)

  • 김무한;권영진;강석표
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.43-51
    • /
    • 2000
  • This study is to investigate for the frost resistance of high-flowing concrete using finely ground granulated blast-furnace slag with experimental parameters, such as type of binder, type of superplasticizer and method of curing. The resistance to freezing and thawing of high-flowing concrete by type of binder and superplasticizer is presented differently. Though the frost resistance of high-flowing concrete is satisfactory under standard condition, it is required that high-flowing concrete has entrained air like plain concrete. Because the critical spacing factor, being capacity of frost resistance, of high-flowing concrete is longer that of plain concrete, the frost resistance of high-flowing concrete, using finely ground granulated furnace blast slag, is superior to that of plain concrete.

Effect of Blastfurnace Slag Fineness on the Rheological Properties of Cement Pastes (고로슬래그 분말도가 시멘트 페이스트의 유동특성에 미치는 영향)

  • Song, Jong-Taek;You, Chang-Dal;Byun, Seung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.2 s.297
    • /
    • pp.103-109
    • /
    • 2007
  • In this study, the rheological properties of cement pastes containing blastfurnace slag of different fineness were investigated. The fluidity of cement pastes with low Blaine value blastfurnace slag was increased with decreasing the plastic viscosity and the yield stress of pastes. And the optimum dosage of polycarboxylate type superplasticizer to the cement pastes was confirmed according to the fineness and the replacement ratio of blastfurnace slag. All cement pastes showed the thixotropy behavior. And also it was formed that the segregation range of cement pastes was occurred below $10D/cm^2$ of the yield stress and below 350 cPs of the plastic viscosity by the coaxial cylinder viscometer.

A Study for Improving on Quality of Ready Mixed Concrete (레디믹스트 콘크리트의 품질개선(品質改善)을 위한 연구(研究))

  • Moon, Han Young;Choi, Jae Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.33-45
    • /
    • 1983
  • In the course of transportation of ready mixed concrete, it sometimes happens that time of haul from mixing at a batching plant to placing of the concrete at a job site is prolonged too much. When it does happen, improvement in the concrete workability needs to be made by proper measures. It is proposed, therefore, to discuss the quality of concrete modified by time of haul and to search for methods for improvement of the quality by means of adding cement and water or superplasticizer. It was found in this experiment that retempering concrete with superplasticizer is useful in coping with the quality deterioration.

  • PDF

A Fundamental Study on Effecting of Admixture on Physical Properties of Antiwashout Concrete (수중불분리 콘크리트 물성에 미치는 혼화제의 영향에 관한 기초 연구)

  • 신도철;이종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.180-185
    • /
    • 1994
  • An experimental study was carried out for the estimate of the properties of concrete contained an antiwashout admixtures. Properties of antiwashout under water concrete clearly differed from other types of concrete. This paper reports the effects of specific types, dosage of antiwashout admixtures and superplasticizer. The test results have indicated that dosage of antiwashout admixture and superplsticizer to improve the antiwashing property, fluidity and compressive strength will be approximately 2.5kg/$\textrm{m}^3$, 8~10kg/$\textrm{m}^3$ of the weight of concrete each. When cellulous ether type antiwashout admixture is added with a napthalen sulphonate superplasticizer, resulting in reduced whole properties of antiwasout under water concrete.

  • PDF

Properties of Metakaolin Concrete containing Various Superplasticizers (혼화제 종류에 따른 메타카올린 콘크리트의 특성)

  • 안태호;김용태;강범구;김병기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.539-544
    • /
    • 2002
  • The properties of mortar and concrete including metakaolin as a partial cement replacement were investigated in terms of fluidity and compressive strength. The results show that mortar and concrete in which 10 % of cement is replaced with metakaolin exhibit much higher compressive strength after 3 days of hydration than ordinary Portland cement, indicating that metakaolin can be used in the production of high strength concrete replacing silica fume. The type of superplasticizer largely affected on the fluidity and compressive strength of mortar and concrete including metakaolin. It was concluded that when metakaolin is used for the purpose of manufacturing high strength concrete, it is desirable to use PNS based blends rather than PNS, PMS and polycarboxylate based superplasticizer.

  • PDF