• Title/Summary/Keyword: Superplasticizer

Search Result 319, Processing Time 0.034 seconds

An Experimental Study on Elastic Properties of Rice Straw Ash Concrete (볏짚재 콘크리트의 탄성특성에 관한 실험적 연구)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.1
    • /
    • pp.92-98
    • /
    • 2000
  • This study is performed to evaluate the elastic properties of rice straw ash concrete using reices straw ash, cement, natural sand, gravel, and superplasticizer. The following conclusions are drawn ; The ultrasonic pulse velicity is in the range of 4,084 ~4,336m/s , which has showed about the same compared to that of the normla cement concrete. The highest ultrasonic pulse velocity is showed by 5 % rice straw ash filled rice straw ash concrete. The dynamic and static modulus of elasticity is in the range of 294 $\times$10$^3$ ~347 $\times$ 10$^3$ and 266 $\times$10$^3$~328 $\times$10$^3$kgf/㎤ , respectively. It is showed about the same compared to that of the normal cement concrete. The Poisson's number of rice straw ash concrete is less than that of the normal cement concrete.

  • PDF

Flow properties of Ultra Fine Cement with Superplasticizer (유동화재 변화에 따른 초미립자 시멘트의 유동특성)

  • 채재홍;이종열;이웅종;박경상;김진춘;이세웅
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.58-63
    • /
    • 1999
  • Almost all concrete structures have many inevitable cracks for various reasons such as drying shrinkage, heat liberation of cement, fatigues or repeating loads and movements. Conventionally, they are repaired with epoxy materials. The Epoxy resins used by repair materials are different from properties of the base concrete materials such as thermal and mechanical properties - thermal expansion coefficients, bending strength. And the epoxy resin cannot release the water inside the concrete structure and cause corrosion of the steel bars. In this study, before the experiment got launched, we had analyzed cement and slag. Then We blended the two grades of ultra fine cement using high blaine cement and slag. And the cement slurry was produced by water and suprplasticizer to each blended ultra fine cement in various conditions. The slurry produced by each conditions was evaluated with flow properties such as viscosity, dropping time, segregation and observation of dry surface after injection.

  • PDF

A Study on the Freeze-Thaw Resistance of Water-permeable Concretes (투수성 콘크리트의 동결융해 저항성에 관한 연구)

  • 은재기;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.433-438
    • /
    • 2000
  • The purpose of this study is to examine the resistance of water-permeable concretes to freezing and thawing action. The water-permeable concretes with cement-aggregate ratio of 1:5.5(by weight) and two kinds of admixture content [SP : superplasticizer(0, 1.0%), HPAE : high performance air entraining agent(0.5, 1%)] used OPC(ordinary portland cement) as binder were prepared, and then tested for relative dynamic modulus of elasiticity, mass change, length change and durablity factor. It's been concluded from the test results that the superior relative dynamic modulus of elasiticity and durability factor of water-permeable concretes were obtained at superplaciticizer 1.0% after 300 cycles. The water-permeable concretes used superplasiticizer 1.0% having relative durability factor of 88% after 300 cycles.

  • PDF

Effect of PC(Polycarboxylate)-type Superplasticizer on the Hydration Reaction of Cement Paste (PC(Polycarboxylate)계 고유동화제가 시멘트 수화 반응에 미치는 영향)

  • Chae, Eun-Jin;Shin, Jin-Yong;Suh, Jeong-Kwon;Hong, Ji-Sook;Kim, Jae-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.533-536
    • /
    • 2006
  • PC-type copolymers were synthesized using MPEG(Polyethylene glycol methyl ether methacrylate, Mn=2080) to different mole ratios of mono-carboxylic acid(AA : Acylic acid). The mole ratios of AA were 2, 3, 4. To investigate effects of PC-type co-polymers on the hydration of cement, experiments involving FT-IR, XRD, SEM have been analysed with cement paste specimens to 1, 3, 28 day. The hydration reaction rate of cement paste was slightly delayed at 1 day, due to increase in molar ratio of [AA] / [MPEG], it was recovered in the days after.

  • PDF

A Study on the Improvement for Construction Performance of Fiber Reinforced Cementitious Composites (섬유 보강 시멘트 복합체의 시공성 향상에 관한 연구)

  • Koh, Kyung-Taeg;Park, Jung-Jun;Ryu, Gum-Sung;Kang, Su-Tae;Ahn, Ki-Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.393-396
    • /
    • 2006
  • This study present the experimental research investigating the influence of material factors such as a type or amount of superplasticizer, velocity agent, mineral admixture and steel fiber on the construction performance of fiber reinforced cementitious composites. As for the test results, it was found that the workability of fiber reinforced cementitious composites can be improved when the material factors were matched properly in amount and composition. Furthermore, it was shown that the smaller value of the aspect ratio of fiber improved the workability of fiber reinforced cementitious composites. And the fiber reinforced cementitious composites with better workability showed the enhanced compressive strength and flexural strength.

  • PDF

Synthesis of High-Performance Polycarboxylate(PC)-Type Superplasticizer, and Its Fluidity and Hydration Behavior in Cement Based-System (폴리카복실레이트계 고성능 유동화제의 합성과 시멘트계 내의 유동 및 수화 반응 거동)

  • Shin, Jin-Yong;Chae, Eun-Jin;Hong, Ji-Sook;Suh, Jeong-Kwon;Hwang, Eui-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.77-80
    • /
    • 2006
  • Graft copolymerized polycarboxylate(PC)-type superplasticizers(PCs) which have carboxylic acid with $\pi$ bond among the molecular structure and polyethyleneglycol methyl ether methacrylate(PMEM) were synthesized by free radical reaction and investigated the chemical structure, polymerization condition, and physical and chemical properties. Also, the effects of PCs in the dispersion, adsorption and hydration of cement were evaluated. As the molecular weight of graft chain decreases, the adsorption amount on cement particles increased. It was advantageous for the flow to reduce molar ratio, the lower the side bone molecular weight, and increase the molar ratio, the larger the side bone molecular weight. The hydration reaction speed was highly delayed at day 1, due to increase in molar ratio and reduction in side bone molecular weight, but it was recovered in the days after.

  • PDF

An experimental study on the fragility factor of high strength concrete (고강도 콘크리트의 취도계수에 관한 실험적 연구)

  • Kim, Hui-Doo;Yang, Seong-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.148-149
    • /
    • 2014
  • In modern society, population overcrowding and concentration of facilities are happened because of the concentration on to city. So this phenomenon demands improvement of material's performance, technical development of structure analysis and design and improvement of constructing ability .High strength concrete has some merits. High strengthening makes the cross section reduced, and that cause decrease of structure weight. And using high durable and superplasticizer promote liquidity, thus high quality concrete can be produced. Because of these advantages, this study is for showing validity of using it by compression/tensile strength experiment. As this experiment's result, when concrete become stronger, interface intensity coefficient between cement and aggregate is different and they don't adhere to each other. So there is brittle failure. Fragility factor also steadily increase with strong concrete, it tells high strength concrete has problem. Therefore the sources used in high strength concrete like cement and aggregate must have great quality. So the source's performance must be supervised well because their quality decides performance criteria.

  • PDF

A Study on the Engineering Properties of Concrete according to Water Content (단위수량 변화에 따른 콘크리트의 공학적 특성에 관한 연구)

  • 이병상;김기정;양경석;심영태;정용희;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.27-30
    • /
    • 2003
  • This study is investigated the various properties and drying shrinkage of concrete according to water content under the condition proper fluidity is adjusted, in order to suggest the method for reduction of crack by drying shrinkage. According to the results, though water content varies, slump and air content are satisfied to the planed values, but shear slump and separation happen at water content of 120 and 140kg/$m^3$ due to the overuse of superplasticizer(SP). As water content is diminished, setting time is retarded by an increase of the using amount of SP, and compressive and tensile strength increase in the range of 160-180kg/㎥ of water content, but decrease significantly at 120 and 140kg/$m^3$. Length change by drying shrinkage decrease with a decrease of water content. Therefore, considering not only drying shrinkage but also fluidity, setting time and strength, it proves that the most appropriate water content of concrete is 160kg/$m^3$ in the condition of this experiment.

  • PDF

An Experimental Study on the Engineering Properties of Middle Fluidity Concrete using the Fly-ash and Portland Blast-Furnace Slag Cement (플라이 애쉬 및 고로시멘트를 사용한 중유동콘크리트의 공학적 특성에 관한 실험적 연구)

  • 윤종기;나철성;송민섭;김재환;장종호;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.44-47
    • /
    • 2003
  • High flowing concrete has not spread whole in the normal concrete structure, because it requires special quality control technique. Recently owing to the lack of natural resources and reinforcement of environmental standard, the construction cost of cement is rapidly increased. Also ready mixed concrete industry has gone through various economical difficulty as the manufacture cost of concrete is increased. So, the purpose of this study is to evaluate the qualities of middle fluidity concrete using the fly-ash and portland blast-furnace slag cement in order to decrease the amount of cement and resolve the problem of the quality control of high flowing concrete and the manufacture cost. The results of this study show that it reduces the amount of addition of superplasticizer and develope properties of concrete to the use the fly-ash and portland blast-furnace slag cement.

  • PDF

A Study on the material properties of Self-compacting concrete using Korean and Japanese Belite rich cement (한국 및 일본의 Belite rich Cement를 사용한 자기충전형 콘크리트의 재료적 특성에 관한 연구)

  • Kim, Jong-Woo;Ha, Jae-Dam;Kim, Ki-Soo;Shin, Kyu-Yeun;Choi, Woong;Kenichiro, Seto
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.177-182
    • /
    • 1998
  • In this study, We compare material properties of Self-compacting concrete using Korean Belite cement with Japanese. Self-compacting concrete consolidates densely by virtue of its own weight at the location where concrete compaction cannot be carried out. Material properties of Korean and Japanese Belite cement are very similar but compatibility with superplasticizer and viscosity agent are some different. Before the batch mix, the compatibility must be checked as fresh concrete properties. For the concrete test results, Korean Beilite cement is suitable to product High performance concrete.

  • PDF