• 제목/요약/키워드: Superplastic Materials

검색결과 57건 처리시간 0.021초

초소성 하이드로포밍과 확산 접합의 연속 공정을 위한 Ti-3Al-2.5V 튜브의 열처리 미세조직 (Heat-Treated Microstructures of Ti-3Al-2.5V Tube for the Successive Process of Superplastic Hydroforming and Diffusion Bonding)

  • 배근수;이상용
    • 열처리공학회지
    • /
    • 제29권2호
    • /
    • pp.56-61
    • /
    • 2016
  • Heating experiments using the Ti-3Al-2.5V tube materials in a vacuum furnace have been performed to investigate a pertinent range of working temperatures and holding times for the development of the successive or simultaneous operation of superplastic hydroforming and diffusion bonding. The specimens were heated at $820^{\circ}C$, $870^{\circ}C$ and $920^{\circ}C$ respectively. Holding times at each temperature were varied up to 4 hours. Holding times longer than 1 hour were selected to consider the diffusion bonding process after or during the hydroforming process in the superplastic state. Grain sizes were varied from $5.7{\mu}m$ of the as-received tube to $9.2{\mu}m$ after heating at $870^{\circ}C/4hours$. Homogeneus granular microstructures could be maintained up to $870^{\circ}C$, while microstructures at $920^{\circ}C$ showed no more granular type.

초소성 성형/확산접합 공정의 유한요소 해석 (Finite Element Analysis of Superplastic Forming/Diffusion Bonding Processes)

  • 홍성석;김용환
    • 소성∙가공
    • /
    • 제5권1호
    • /
    • pp.37-46
    • /
    • 1996
  • Superplastic forming/diffusion bonding (SPF/DB) processes were analyzed using a rigid visco-plastic finite element method. The optimum pressure-time relationship for a target strain rate and thickness distributions were predicted by two-node line elements based on the membrane approximation for plane strain. Material behavior during SPF/DB of the integral structures having complicated shapes was investigated. The tying condition is employed for the analysis of inter-sheet contact problems. A movement of rib structure is successfully predicted during the forming.

  • PDF

국부적 용융이 ${Si_3}{N_{4p}}$/2124 Al 복합재의 초소성 거동에 미치는 영향 (II) (The Effect on Partial Melting on Superplastic Flow of ${Si_3}{N_{4p}}$/2124 Al Composites (II))

  • 정하국;김혜성
    • 한국재료학회지
    • /
    • 제11권7호
    • /
    • pp.585-589
    • /
    • 2001
  • 많은 연구결과들은 국부적 용융체의 존재가 고온인장 변형 시 발생하는 내부공극의 발달을 억제할 수 있음을 보고하고 있다. 그러나 이러한 국부적 용융체가 존재한다고 해서 반드시 고변형속도 초소성 현상이 관찰될 수 있는 것은 아니다. 금속기지와 보강재간의 계면에 국부적 용융체의 양이 너무 많이 존재하면 두상간의 결합력이 떨어져 금속기지상으로부터 보강재가 분리되는 현상이 야기될 수 있기 때문이다. 그러므로, $Si_3$$N_{4p}$ 2124 Al 복합재의 초소성 유동 특성을 이해하기 위해 변형온도에 따른 미세구조 변화와 계면특성을 조사하였다. 본 연구를 룽해 $Si_3$$N_{4p}$ 2124 Al 복합재에서 Al-기지와 $Si_3$$N_{4p}$ 강화상간의 계면상의 국부적 용융이 시작되는 온도부근에서는 큰 초소성 특성이 얻어지지만, 국부적 용융이 시작되는 온도를 지난 인장온도범위에서는 오히려 초소성 특성이 현저하게 저하되는 현상이 관찰되었다. 위의 실험결과는 $Si_3$$N_{4p}$ 2124 Al복합재의 고변형속도 초소성 거동에 기여하는 최적의 액상량이 존재한다는 것을 의미한다.

  • PDF

초소성 성형공정 최적화 (Optimization of Superplastic Forming Process)

  • 이정민;홍성석;김용환
    • 소성∙가공
    • /
    • 제7권3호
    • /
    • pp.207-214
    • /
    • 1998
  • Influence of final thickness distribution in superplastic forming processes on mechanical properties of the product becomes very crucial. We should improve the thickness distribution of products by combining process parameters adequately In this paper we adopt a non-linear optimization technique for optimal process design of superplastic forming. And optimum design variable which makes the most adequate thickness distribution in combined stretc/blow forming and blow forming is predicted by this optimization scheme and rigid-viscoplastic finite element method.

  • PDF

실험계획법을 이용한 초소성 성형/확산접합의 공정설계 (Process Design of Superplastic Forming/Diffusion Bonding by Using Design of Experiment)

  • 송재선;강영길;홍성석;권용남;이정환;김용환
    • 소성∙가공
    • /
    • 제16권2호
    • /
    • pp.144-149
    • /
    • 2007
  • The superplastic forming/diffusion bonding(SPF/DB) is widely used in the automotive and aerospace industry because it has great advantage to produce complex, light and strong parts. But the superplastic forming process requires much forming time and generates excessive thinning in the thickness distribution of formed part. It is necessary to minimize trial and error for SPF/DB Process. Finite element analysis using $L_{18}$ orthogonal may table of Taguchi method for 3-Sheet D/B process is carried out. Through the study, effect of process parameters, such as DH region size, thickness and friction coefficient, is evaluated and the optimum condition is derived.

결정립 성장을 고려한 초소성 성형공정의 유한요소해석(I) (Finite Element Analysis of Superplastic Forming Processes Considering Grain Growth (I))

  • 김용관;송재선;김용환
    • 소성∙가공
    • /
    • 제21권3호
    • /
    • pp.151-159
    • /
    • 2012
  • Finite element simulations were conducted to investigate the influence of grain growth in the superplastic blow forming process. A microstructure-based constitutive model considering grain growth effects is proposed and used in the simulations. Also, a grain growth rate equation accounting for both static and dynamic grain growth is implemented. The simulations were made using a 2D plane-strain model for constrained blow forming and an axisymmetric model for free bulging. These two models showed different features during the forming stages. However, the forming pressure-time curve and the thickness distribution obtained by both simulations explained well the deformation hardening induced by the grain growth during superplastic forming. This study shows that grain growth is an important factor in determining the material behavior during superplastic deformation.

유한요소법을 이용한 초소성 성형/확산접합 공정해석 (Analysis of superplastic forming/diffusion bonding process using a finite element method)

  • 송재선;김용환;홍성석;강영길;이정환;권용남
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.265-268
    • /
    • 2006
  • The superplastic forming/diffusion bonding is widely accepted as an advanced technique for forming complex industrial components. But the superplastic forming process requires much forming time and generates excessive thinning thickness distribution of formed part. Superplastic in materials is only achieved in a narrow range of strain-rate with optimum value unique to each material. In this study, finite element analysis for surperplastic forming/diffusion bonding (SPF/DB) processes of three-sheet and four-sheet sandwich parts. From this study, forming analysis have offered a lot of information for developing the forming process.

  • PDF

AZ31 합금의 부풀림 성형시 공공의 거동 (Cavitation Behavior of AZ31 Sheet during Gas Blow Forming)

  • 김상현;강남현;권용남
    • 소성∙가공
    • /
    • 제20권8호
    • /
    • pp.601-610
    • /
    • 2011
  • Based on the facts that AZ31 magnesium alloy can be blow formed just like superplastic aluminum alloys and that most superplastic alloys fail by cavitation, the present study was undertaken to investigate the cavitation behavior of a fine-grained AZ31 sheet during blow forming at the elevated temperature. Other points of interest included the much lower strain rate and temperature dependencies of the magnesium alloy compared with conventional superplastic alloys. It was also aimed to find if cavitation in the AZ31 alloy can be suppressed by hydrostatic pressure, as is the case in most superplastic alloys. Interestingly, the application of hydrostatic pressure did not increase the blow formability of AZ31 sheet, even though it reduced the degree of cavitation. A possible reason for this behavior is discussed.

초소성 판재의 벌지성형 공정 해석 (An Analysis of Superplastic Bulging of Sheet Metal)

  • 홍성석;이성호;이종수
    • 소성∙가공
    • /
    • 제1권1호
    • /
    • pp.87-94
    • /
    • 1992
  • An analytical method has been presented for the study of the superplastic bulging process of sheet metal. Through this method, it is possible to obtain the optimum pressure-time curve for the superplastic forming and to predict the thickness distribution of bulged sheet metal with less computational cost than that by finite element analysis. Experiments have been performed to confirm the results of this analysis with Supral 150 sheets by adopting the computed optimum pressure-time curve. Good agreement between predictions and experimental data has been obtained for the bulged profile and its thickness distribution.

  • PDF

ECAP 가공한 Zn-0.3Wt%Al 합금의 초소성 변형 특성 (Superplastic Deformation Behavior of a Zn-0.3Wt%Al Alloy Fabricated by ECAP)

  • 하태권;정재용;김근준;나길환
    • 소성∙가공
    • /
    • 제18권6호
    • /
    • pp.448-452
    • /
    • 2009
  • Superplastic deformation behavior and texture evolution after equal channel angular pressing (ECAP) of Zn-0.3Wt%Al alloy were investigated in this study. ECAP was conducted at temperatures from $60^{\circ}C$ to $160^{\circ}C$ on the plate type specimens of 5 mm thickness and 20 mm width. The specimens obtained by ECAP showed typical texture with basal poles tilted away from the ND toward ED, which is called shear texture. Tensile tests were carried out at $100^{\circ}C$ for ECAPed specimens under the strain rate of 0.0002/s. After ECAP of the Zn-0.3Wt%Al alloy, elongation was dramatically increased up to 500% at $100^{\circ}C$. The effect of ECAP on the anisotropy in the superplastic deformation behavior was negligible.